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Abstract: Determining the design of pushbacks in an open-pit mine is a key part of optimizing
the economic value of the mining project and the operational feasibility of the mine. This problem
requires balancing pushbacks that have good geometric properties to ensure the smooth operation of
the mining equipment and so that the scheduling of extraction maximizes the economic value by
providing early access to the rich parts of the deposit. However, because of the challenging nature
of the problem, practical approaches for finding the best pushbacks strongly depend on the expert
criteria to ensure good operational properties. This paper introduces the Advanced Geometrically
Constrained Production Scheduling Problem to account for operational space constraints, modeled as
truncated cones of extraction. To find the best solution for this problem, we present a parallel genetic
algorithm based on a genotype–phenotype model such that the genotype symbolizes the base block
of a truncated cone, and the phenotype represents the cone itself. A central computer node evaluates
these solutions, collaborating with various secondary nodes that evolve a population of feasible
solutions. The PGA’s efficacy was validated using comprehensive test instances from established
research. The PGA solution exhibited a consistent average copper grade across periods, with its
incremental phases reflecting real-world mine geometry. Moreover, the benefits of the MeanShift
clustering technique were evident, suggesting effective phase-based scheduling. The PGA’s approach
ensures optimal resource utilization and offers insights into potential avenues for further model
enhancements and fine-tuning.

Keywords: open-pit problem; parallel genetic algorithm; mine scheduling

1. Introduction

One of the most important steps in the strategic planning of an open-pit mine is
the determination of the pushbacks. A pushback is a material volume extracted within
operational and slope angle constraints. Pushbacks are connected volumes that satisfy
geometrical constraints (like slope angle and mining space) which can be mined with
relative independence. A good design of pushbacks ensures that the mining operation will
run smoothly but also that valuable material will be accessed promptly; thus, maximizing
the economic value of the mining project. Due to its relevance and impact on the economic
value of a mine, mining engineers utilize optimization models to help them determine
the best set of pushbacks. These mathematical methods generate many nested pits from
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which some can be selected by the engineer to define the pushbacks. This selection is
assisted by heuristic methods and depends heavily on the criteria of the user, as it needs to
balance several aspects, including the geometrical properties and scheduling the extraction
of the pushbacks which are used to approximate the economic value (net present) of the
pushback selection.

Scheduling material extraction from an open-pit mine is critical for optimizing mining
production. The spatial distribution of the ore grade of a deposit is not homogeneous, and
the material extraction may last many years. Therefore, the order in which the ore and
waste are extracted significantly impacts the yearly cash flows and the net economic profit.
A solution to this optimization problem must specify the parts of the mineral deposit that
will be extracted and processed in each period to obtain the maximum net profit, i.e., it
has to specify spatial and temporal dimensions for the extraction. In modeling such a
situation, the ground is represented as a block model, which separates the space into a 3D
array of blocks. Such a block model serves as a tool in planning ore extraction, bridging the
geological complexities of a deposit and the operational strategies required to maximize
efficiency and profitability.

The economic value of blocks extracted and processed within a given period is the
main factor driving a production schedule’s net present value. Geostatistical methods
assign attributes such as grade, density, and tonnage to each block [1]. These attributes,
along with mineral prices and operational costs, help estimate the economic value of
each block. Blocks with positive economic value are classified as ore, while those with
negative economic value are labeled waste. This categorization helps determine the optimal
production schedule by specifying the extraction of blocks in each period.

Finding a production schedule of maximum net present value is complex. The first
challenge is due to the magnitude of the problem, given that standard block models can
encompass millions of blocks. Secondly, not every production schedule is feasible. For
example, mining capacities limit the material movement per period, processing capacities
limit the tonnage of ore per period, or even processing demands enforce a minimum
production per period. Moreover, the slope angle is the fundamental constraint of open-pit
production scheduling, guaranteeing the pit wall stability. Despite the intricate nature of
these challenges, the block model adeptly simplifies and represents this complexity, making
it an indispensable tool in the planning process.

The literature has considered several variations of the problem. An instance of the
problem considering only the geometric constraints and a single period yields the economic
envelope of the mine. This specific case is known as the Ultimate Pit Limit problem (UPIT),
as presented by Lambert and Newman [2] and Lerchs and Grossman [3]. Specialized
algorithms, as suggested by Hochbaum [4], can efficiently solve it. A different variant, the
constrained pit problem (CPIT), arises when considering the slope angle and upper-bound
capacity constraints. Despite its NP-hard nature, a specialized algorithm capable of pin-
pointing suitable solutions that account for resource, precedence, and capacity constraints
is presented in [5]. Notably, their model embeds two distinct resource constraints for every
period, emphasizing the yearly total tonnage extracted and processed.

The current state-of-the-art generalization of the scheduling problem is the precedence-
constrained production scheduling problem (PCPSP). This problem considers multiple
destinations, one economic value per block, period, and destination; the slope angle
constraints; and an arbitrary number of other or side constraints [6]. Despite its generality,
the focus of this problem is production scheduling, which means that it does not consider
some practical constraints that limit the extraction from a geometrical point of view.

Unfortunately, the algorithms for scheduling do not address the geometric constraints
of the problem beyond the slope precedence constraints. Hence, algorithms devised for
PCPSP do not consider these geometric properties and do not apply to compute operational
increment phases. Indeed, in [7], solutions to the problem with minimum bottom space
can be arbitrarily far from PCPSP solutions, i.e., solutions cannot approximate the problem
with minimum operational bottom space.
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The problem of generating good pushback has been addressed by several authors.
The de facto approach is based on the generation of multiple nested pits. These pits are
produced by parametrizing the income of the blocks and relying on efficient algorithms,
like Lerchs and Grossman, to find a solution. Other studies [8–10] address the problem of
finding one pit with good geometrical properties. The methods rely either on mathematical
formulations that explicitly set constraints so that the solutions are similar to actual designs
or algorithms that postprocess solutions and improve the geometrical properties of the
solutions, or a combination of both. Ref. [11] proposes a mathematical model that can be
used in the same way as the ultimate pit (by parametrizing the income) but produces pits
with more space at the bottom.

Given the assumptions made by the PCPSP model and the limitations of other ap-
proaches, there is a need to conceptualize a new problem that can more precisely handle
these nuanced constraints. This new problem, which we call the Advanced Geometrically
Constrained Production Scheduling Problem (AGCPSP), accounts for operational incre-
ments and adheres to the geometrical constraints of mining. The AGCPSP will consider the
minimum mining width and operational bottom space in its computations, thus enabling a
more precise and feasible extraction plan that applies to real-world mining scenarios.

This paper addresses the AGCPSP considering the slope precedence angles, upper
capacity constraints, and minimum operational bottom modeled and looks for a set of
mining pushbacks that comply with the geometrical constraints and are suitable for high-
value production scheduling. For this, we observe that increments obtained using PCPSP
and its variants correspond to the union of inverted cones, where the vertices of the cones
are blocks. Then, for our modeling, we propose to replace the vertices with circles of a
certain radius. Each truncated cone has a centroid block of the basal face, a radial basal face,
and a lateral slope angle. Figure 1a shows an example of two-dimensional truncated cones
and their components for extraction in mining: a radius and a slope angle. In contrast,
Figure 1b shows an example of two truncated cones being part of the same increment. The
extraction scheduling requires a design of the benches at each period.
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This paper introduces a parallel genetic algorithm (PGA) with a genotype-phenotype
framework tailored for the AGCPSP. The genotype represents centroid blocks that make up
phases, while the phenotype is shaped by truncated cones, facilitating the management of
spatial constraints and precedence order. We implement the PGA on a computer network
where a primary node orchestrates the fitness evaluation of individuals by multiple sec-
ondary nodes. We tested the PGA using some of the most rigorous instances from existing
literature to gauge its performance.

The structure of the remainder of this paper is as follows: Section 2 offers a concise
review of the most recent research in the field of strategic open-pit mining planning.
Section 3 provides a detailed explanation of how the problem is represented for the parallel
genetic algorithm, elaborating on the solution’s representation and the evaluation function.
In Section 4, we discuss the results of the computational experiment. Lastly, in Section 5,
we outline the conclusions drawn from this study.

2. Literature Review

CPIT is an optimization problem that has garnered significant interest in this field of
research. The formulation of CPIT as an integer programming optimization problem has been
tackled using exact methods. However, owing to the NP-hard nature of this issue, alternate
strategies have been necessitated to yield satisfactory outcomes. One strategy involves
relaxing certain constraints to break the problem into simpler sub-problems [2,12]. In this line
of research, sub-problems that contain only the geometrical constraints give typical network
flow problems that can be solved efficiently [13]. The sliding time window heuristic based
on a fix-and-optimize scheme has also been used to solve the mixed integer programming
sub-problems for instances with up to 25,000 blocks considering 15 periods [14].

Approximate solutions have been derived by relaxing the integer constraints, solving
the ensuing linear programming problem, and incorporating a localized search step. This
approach yielded deviations as minimal as 2% from the optimum value, even when applied
to instances comprising as many as 3.5 million blocks [5]. A mixed-integer programming
model is proposed in [15], which presumes a predetermined destination for each extracted
block: plant or waste dump. The authors developed a particular decomposition proce-
dure using the hierarchical Benders decomposition and a specialized branch-and-bound
heuristic that produces mixed-integer solutions. They were able to solve, to near optimality,
problems with up to 25,000 blocks and 20 periods. A local branching to accelerate the search
process is proposed in [16]. Also, they developed a heuristic to generate a starting feasible
solution and obtain a better performance than two other techniques from the literature on
large instances.

Large-sized CPIT problems have been approached by metaheuristic methods, par-
ticularly population-based methods that show a good performance for several problem
instances. Instead of searching the solutions domain by sequentially visiting one solution
at a time, these methods use parallelism by simultaneously visiting a population of so-
lutions [17,18]. A recent population-based approach was differential evolution (DE) to
solve CPIT [19]. DE solved the problem in the continuous domain; a heuristic obtained
the solutions in the integer domain. A repairment process corrects unfeasibility (block
precedence or resource capacity constraints). The authors assert that the repairment pro-
cess has a disadvantage as it uses too much computational time for large-scale instances;
consequently, it still implies a significant challenge. The flexibility offered by a population
method, like a genetic algorithm to represent optimization problems, facilitates the search
for an optimal solution. For CPIT, a representation of the model through a tridimensional
string allows for the determination of good solutions through a genetic algorithm [20]. This
approach required specific crossover and mutation operators so that the constraints could
be managed with flexibility and allow for the improvement of the solutions generated at
each step by a local search module.

Different genetic algorithm variants have also been proposed to solve open-pit mining
problems in parallel. A parallel GA defining particular operators could solve UPIT with
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millions of variables in a reasonable computational time [21]. Furthermore, another GA
could produce UPIT optimal solutions and reproduce results obtained with dynamic and
integer programming in examples with a few blocks. By solving a problem with 250,000
blocks, the GA required approximately 500 generations with 200 solutions each. In a
different approach, a hybrid method combines a maximum flow algorithm and a GA that
allows solving cases for CPIT with an uncertain scenario [22]. The authors obtain robust
solutions for the proposed instances and compare them with the upper bounds provided by
CPLEX. An additional approach employing GA is presented in ref. [23], where the study’s
main contribution is based on a comprehensive comparison between the metaheuristic and
the CPLEX solver. The analysis highlights the differences in execution time between the
two, noting that the CPLEX solver may require a more extended period, sometimes days,
compared to the execution time of GA. In ref. [24], two methods GA and Mixed-Integer
Linear Programming (MILP) were compared for planning extraction in specific open-pit
mines. The experiments showed that GA finds solutions close to the optimum much faster
than MILP. This speed is particularly beneficial for operations in large mines. In a practical
application at a real mine, GA was observed to complete the task significantly faster (in
17 s, compared to 288 s taken by MILP), proving to be an effective option for rapid planning
in mining.

Another solution for the populations-based algorithm is particle swarm optimization
(PSO), which is a technique that emulates the collective behavior of living entities in groups.
In ref. [25], numerical analyses were developed for various CPIT cases employing this
method. First, the authors relate CPIT with the scheduling problem of limited resources.
Although the authors consider only the maximum amount of minerals that can be extracted
in each period as the constraint, the authors indicate that the algorithm can improve the
initial solution generated by the GRASP method for the 20 problem instances studied with
dimensions between 64 and 508 blocks. The authors discovered that the population size is
directly related to the quality of the solution. Three other variants of the PSO have been
tested to solve two theoretical mines with up to 10,120 blocks [26]. With such variants, the
problem was solved with mathematical programming, and the authors measured the gap
between the results of their algorithms and the optimal solution, showing that PSO derives
solutions close to the optimal solution.

Existing studies for mining scheduling based on CPIT consider exact and heuristic
methods, highlighting the great challenge that still imposes the problem. However, three
aspects are the most remarkable. The first is the high computational time needed for finding
optimal solutions. Exact methods guarantee the determination of the optimal solution
with a high computational cost that, for some examples, is infeasible. In turn, heuristic
methods allow for finding near-optimal, feasible solutions for large-size examples without
guaranteeing an optimal solution. The second aspect is that the CPIT does not model
an essential practical condition for the extraction, that is, the appropriate definition of
accesses, roads, and sufficient space to operate machines and trucks. The third aspect, also
not considered in the CPIT, is the mineral’s extraction using phases that ensure the space
requirements to operate large pieces of equipment and to access different parts of the mine.
The design of the increment phases must consider the annual financial management of
production, and, therefore, each phase must be closely linked to the production scheduling.
Thus, the introduction of the AGCPSP aims for a solution that more accurately reflects the
geometric and operational intricacies of real-world mining scenarios.

The removal of material from the mine surface is performed by large pieces of machin-
ery that require space for movement and operation. However, the planning methodology
proposed by [3] omits this requirement. This limitation of the approach is known both by
commercial solutions and the research community. For example, Wharton et al. [27] indi-
cate that the ultimate pit was never meant to produce operational pit shapes and, therefore,
the method generates geometries with irregular floors, sharp corners, etc. Because of this,
they propose a postprocessing algorithm for improving the geometry after the optimization
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process has ended. Their approach uses squared “templates” for smoothing the solutions
of UPIT. This approach is the one implemented in Whittle, a leading planning software [8].

The problem of determining pushbacks with good geometrical properties has been
addressed directly by a few works. The current practical approach (in software) is to
generate volumes that comply with the slope angles only and postprocessing methods or
heuristics to improve their geometry and ensure other parameters like operational space.
However, it is known that this approach may lead to suboptimal solutions [11].

Bai et al. [9] use mathematical programming and some geometric operators to generate
pits with nice geometrical properties such as minimum space at the bottom, smoothness,
and continuity. For scheduling, they approximate the NPV by assuming a general mining
direction which is fast as it lets them construct a block-by-block schedule and apply a
block-by-block discount rate. Using this approximation, they show that their approach
generates pushback and also improves the NPV.

Tabesh et al. [10] also apply optimization algorithms. In their case, the model is
combined with clustering techniques. The model is difficult to solve, hence, they propose
the application of two heuristics: local search and greed to accelerate the computation
process. Finally, they postprocess the results to improve the geometry even further.

Nancel-Penard and Morales [28] introduce a binary integer program that designs a
single pushback subject to geometrical constraints related to connectivity, minimum space
and widths at the bottom, and minimum and maximum tonnages. They use the same
approach as [10] for approximating the NPV and to speed up the computations. They also
preprocess the block model to reduce the size of the instances by removing blocks unlikely
to be part of the solution. The method is applied to publicly available cases for which they
show that the resulting pits have much better geometry, although there is a small reduction
in NPV when compared to the NPV of the designs without geometric constraints.

More recently, Morales et al. [11] have proposed a novel method that extends the
approach of nested pits. Their approach also produces nested pits by parametrizing the
income of the blocks. However, it considers some penalizations related to the space at the
bottom of the generated pits; thus, generating pushbacks with more space at the bottom for
large machines. The main advantage of their approach is its efficiency (the model can be
solved using continuous variables only), but in terms of NPV, it does not consider capacities
or opportunity costs.

3. Solution Approach Using PGA

In pursuing an optimal AGCPSP solution via a genetic algorithm, it is necessary to
establish the individual, the fitness function, and the operators [17,29]. Each population
individual symbolizes a potential solution within the search space, with offspring arising
through a stochastic process that emulates natural evolution using selection, crossover, and
mutation mechanisms. We introduce a genotype–phenotype approach to determine the
best AGCPSP solution, as discussed by [30]. In this approach, a solution for the AGCPSP is
first represented as a genotype; subsequently, the complete phenotype solution is derived
from it.

3.1. Representing and Constructing a Feasible AGCPSP Solution

A genotype solution is a set of centroids represented by integer numbers. Conse-
quently, the length of the genotype solution is variable, and the result is not affected by the
order of the elements in the set. Using a set of integer numbers instead of lists ensures that
an individual’s elements are not duplicated. An example of the genotype representation is
depicted in Figure 2. This figure illustrates a genotype solution comprising four bases of
truncated cones, each with a constant radius r = 2. It is important to note that the radius
considered for this example is not derived from the chromosome itself. Instead, it is a
parameter within the fitness function that must be defined beforehand. Consequently, the
chromosome solely contains the centers that constitute the truncated cones. The model
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example of blocks, defined by nx = 10 and ny = 8, is framed within a concentric circle in the
figure.
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A comprehensive mine scheduling solution, the phenotype, is devised from a clus-
tered genotype solution while adhering to geotechnical and operational constraints. This
phenotype solution specifies the extraction increment phases, periods, and blocks to be
mined. A constructive algorithm recognizes all cone blocks in extraction, ensuring the
solution’s feasibility. In particular, the blocks forming the cone base and the precedent
blocks are identified with a given centroid, a radial base, and a slope angle.

3.2. Evaluation of a Feasible Solution

Each solution evaluated by the NPV considers the blocks scheduled for each extraction
phase. Because each block has an associated economic value, it is possible to identify an
extraction period for each block considering the capacities. The value for each period is
adjusted using the discount rate. The method to assess a genotype solution is detailed in Al-
gorithm 1, which emulates the best case algorithm for scheduling, which extracts pushbacks
one by one, sequentially, from top to bottom [8]. The function receives the following input
parameters: I the individual from the PGA; G geometry of the block models; r: basal radius;
δ: slope angle; CP: processing capacity; CM: mining capacity; and α: discount rate. In the
algorithm’s initial steps, specifically lines 1 to 3, the variables are set up, with t representing
the number of periods and S denoting the set of blocks to be extracted. In line 4, the clus-
tering function produces a set of extraction phases (F), each containing centroids (c). This
process is carried out using the non-parametric MeanShift clustering technique in its elemen-
tary version. For our calculations, the three-dimensional distance is utilized to group the
centroids [31]. Next, in both loops, every extraction phase is examined, and a corresponding
set of blocks for scheduling is identified. In variable B (line 7), the total of the blocks of
the truncated cone is obtained. This solid cone is built based on the center (c) for the block
model (G), with radius (r) and angle (δ). Subsequently, a difference of sets is performed
(line 8) between the blocks belonging to the truncated cone of phase f with base c and the
blocks that have already been extracted in the previous processes. Finally, the Scheduling
function returns the NPV generated by the extracted blocks and the number of periods
used (γ). Lines 10 and 11 update the extracted blocks and the total NPV of the process.
The process of the NPV calculation through the fitness function is illustrated in Figure 3.
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Algorithm 1. Evaluation of an AGCPSP solution

Input: I: individual; G: geometry of block models; r: basal radius; δ: slope angle;
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3.3. Definition of PGA Operators

The standard roulette operator selects the genotype solution, while the variation
operators work on the integer number sets. The crossover function merges two sets, p1 and
p2, producing two offspring. The first, h1, originates from the shared elements of p1 and p2,
while the second, h2, is derived from the distinct elements of the parent sets. As illustrated
in Figure 4, parents p1 (four elements) and p2 (six elements) give rise to offspring h1 (two
elements) and h2 (six elements). The mutation function modifies a set by introducing or
eliminating an element based on a predetermined likelihood. Figure 4 depicts an example
of an element being discarded from the original p1 (four elements) originating the offspring
h1 (three elements).
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4. Experimental Results

To evaluate the effectiveness of the PGA, we utilized a collection of instances from
Minelib, as outlined in [6]. Each instance, represented as a block model, provides details
like ore content per block, total block tonnage, operational resource limits for extraction
and processing, and a cut-off grade that classifies material as ore or waste. Additionally,
the instance delineates costs tied to dispatching blocks for processing or mining. Each
instance’s specific discount rate (α) defines the extraction strategy. Table 1 lists the mine
names, the count of blocks, the number of precedences, the minimum quantity of material
earmarked for mining (CM), and the material designated for the processing phase (CP).
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Table 1. Set of instances for CPIT.

Name Number of Blocks Number of Precedences CM (t) CP1 (t) CP2 (t) α

Newman1 1060 3922 2,000,000 1,100,000 0.08
Zuck small 9400 145,640 60,000,000 20,000,000 0.10

KD 14,153 219,778 - 10,000,000 0.15
Zuck medium 29,277 1,271,207 18,000,000 8,000,000 0.10

P4HD 40,947 738,609 52,500,000 12,500,000 0.15
Marvin 53,271 650,631 60,000,000 20,500,000 0.10

W23 74,260 764,786 68,000,000 3,610,000 1,000,000 0.10
Zuck large 96,821 1,053,105 3,000,000 1,200,000 0.10

McLaughlin
limit 112,687 3,035,483 3,000,000 - - 0.15

The PGA was implemented in Python 3.4.3 programming language, and the experi-
ments were performed on a computer with 32 Intel Xeon Haswell 2.30 GHz and 28.8 GB
RAM (by using 32 threads) and a Debian GNU/Linux 9 (stretch), 64-bit operating system.
The experimental process occurred in two phases. The first phase evaluated various pa-
rameter configurations using a computational tool. The set G1, composed of the newman1,
zuck_small, KD, and zuck_medium mine instances, was used for this purpose. In the
second phase, the computational performance was evaluated with the large mine instances:
p4hd, Marvin, w23, zuck_large, and Mclaughlin_limit.

We selected the Scikit Machine Learning package [32] to implement the MeanShift al-
gorithm. As for the algorithm’s parameters, the default settings in Scikit were used without
any modifications to the kernel configuration. This approach guarantees that the algorithm
functions under Scikit’s standard conditions, which aids in both the reproducibility of our
work and the comparability of our results with other studies employing the same settings.

4.1. Tuning of Parameters

The PGA parameters were fine-tuned using the Iterated Racing for Automatic Algo-
rithm Configuration, also known as IRACE, as described by [33]. IRACE (version 3.5), a
software tool, employs the Iterated F-Race method for auto-configuring algorithms and
calibrating parameters. It assesses a selection of candidate configurations on a problem
sample and immediately discards those that perform the poorest once adequate statistical
information becomes available. The mine instances considered were Newman1, zuck small,
and KD. The parameter setups for the PGA included:

• Chromosome size (Nch): {10,15,20,25}.
• The number of generations (Ngen): {10,15,20,50}.
• The size of the population (Npop): {50,100}.
• Crossover probability (Cx): {0.5, 0.7, 0.8, 0.9}.
• Mutation probability (Mx): {1 − Cx}.

IRACE produced three distinct parameter sets, P1, P2, and P3, described in Table 2.
Notably, the number of centroids detected for phenotype and genotype were 15 and 10,
respectively. Throughout the parameter sets, the number of generations and the population
size were constant, and the crossover probability exhibited minimal variation between
the sets.

Table 2. Set of parameters for the PGA.

Set # Nch # Ngen # Npop Cx

P1 15 10 50 0.7
P2 10 10 50 0.8
P3 15 10 50 0.9
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4.2. PGA Evaluation

The PGA concurrently assesses the objective function of the AGCPSP that corresponds
to profit maximization. Selection, crossover, and mutation operations occur on the primary
thread, and new solutions are evaluated across various threads. Each solution undergoes
evaluation on an open thread, allowing a new individual to be evaluated on the same
thread upon completing the previous evaluation. This dynamic procedure is repeated
across all threads until the entire population has been evaluated. Given the varying
sizes of individuals, the computational effort required differs per individual, leading
to threads becoming available at different times. This method enhances the speed of a
population’s evaluation.

4.3. Experimentation with the G1 Mine Instances

Problem instances belonging to G1 were run with the three sets of parameters (P1,
P2, and P3) and with different values of the radial base (r) and the slope angle (δ). The
evaluated pairs were (r, δ): (1, 1), (1, 2), (2, 1), and (2, 2). Table 3 shows the results. Each row
in the table corresponds to a mine instance and shows the algorithm’s performance with
different parameter combinations. Each column shows the performance corresponding
to a parameter set across all mine instances. The final rows in each parameter set show
all instances’ average gap and computational time. The gap is determined in relation to
the best solution achieved by combining the parameters (r, δ). Specifically, the best-known
solution (BKSi) is defined as the best value obtained from the top four combinations,
for instance i. With Vc,i being the value achieved by a specific parameter combination
c ∈ {{1, 1}, {1, 2}, {2, 1}, {2, 2}} for instance i, the gap is determined using the formula
GAPi,c =

(
BKSi−Vc,i

BKSi

)
× 100. For example, for the Newman1 mine and the parameter

combination (r, δ) = (1, 1) in P1, the gap percentage was 0.670% and the computational time
was 5.99 s.

Table 3. Solution quality (gap) and computer time (seconds).

Instance (r, δ) = (1, 1) (r, δ) = (1,2) (r, δ) = (2, 1) (r, δ) = (2, 2)

P1 P1 P1 Set 1

%Gap Time [s] %Gap Time [s] %Gap Time [s] %Gap Time [s]

Newman1 0.670 5.99 1.120 9.76 0.000 6.48 1.170 9.92
Zuck_small 9.290 38.73 10.150 61.21 0.190 205.70 0.000 203.08

KD 38.140 74.66 24.260 121.69 0.000 281.69 1.410 201.92
Zuck_medium 2.070 1740.19 14.650 1706.75 0.000 7252.18 3.860 8173.29

Average 12.540 464.89 12.540 474.85 0.050 1936.51 1.610 2147.05

P2 P2 P2 Set 2

%Gap Time [s] %Gap Time [s] %Gap Time [s] %Gap Time [s]

Newman1 1.910 5.34 2.370 8.36 0.000 5.79 0.690 8.60
Zuck_small 15.580 35.64 10.130 55.64 0.190 196.16 0.000 188.01

KD 39.670 68.87 24.460 110.40 0.000 249.51 1.100 195.82
Zuck_medium 2.060 1572.44 14.230 1575.65 0.000 6527.97 2.830 7092.59

Average 14.800 420.57 12.800 437.51 0.050 1744.86 1.150 1871.25

P3 P3 P3 Set 3

%Gap Time [s] %Gap Time [s] %Gap Time [s] %Gap Time [s]

Newman1 1.860 5.71 1.940 9.08 0.000 6.16 1.070 9.13
Zuck_small 16.360 37.29 10.600 58.19 0.860 187.88 0.000 192.62

KD 40.110 72.19 24.690 114.50 0.000 245.88 2.180 193.09
Zuck_medium 4.070 1625.08 17.150 1714.45 0.000 7076.19 6.600 7380.23

Average 15.600 435.07 13.600 474.06 0.210 1879.03 2.470 1943.77
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An analysis of the results reveals a remarkable parameter combination (2, 1) perfor-
mance, which consistently achieves the lowest or zero gap percentages across all mine
instances and parameter sets, albeit at the cost of significantly increased computational time.
This combination outperforms the other (r, δ) combinations regarding solution quality, em-
phasizing the trade-off between solution accuracy and computational efficiency. Regarding
computational time, the zuck_medium mine is an outlier, requiring a disproportionately
longer time than the other mines across all parameter combinations. This discrepancy
underscores the complexity and unique challenges associated with this specific mine. The
variation in the gap and time values between parameter sets P1, P2, and P3 is insignificant,
indicating comparable performance. The (1, 1) and (1, 2) parameter combinations are
distinguishable from the (2, 1) and (2, 2) combinations for all four mines in all sets.

Parameter combination (2, 1) offers superior solution quality by demanding higher
computational resources, highlighting the need for balancing solution precision and com-
putational efficiency in practical applications. The consistency in model performance
across different parameter sets further attests to the model’s robustness. In contrast, the
distinct performance differences between certain parameter combinations suggest potential
avenues for further investigation and model tuning.

4.4. Experimentation with the G2 Mine Instances

Table 4 shows results from the PGA experiment in various block models. Each row
represents a different instance, which can be considered a different problem or scenario
that the PGA is trying to solve. The UPIT column represents the optimal profit that can be
obtained from the mine, given perfect knowledge and no constraints besides slope angles.
The Best Profit column shows the best solution the PGA could find for each instance.
As we can see, these are generally lower than the UPIT values, meaning that the PGA
could not find the optimal solution in these cases. The Average column represents the
average solution found by the PGA across multiple runs. It provides a sense of the typical
performance of the PGA. The Average # Periods column represents the average number of
generations the PGA had to run to find the solutions. The Average Computer Time column
shows how much computational time the PGA required on average to find its solutions.

Table 4. Results for large-size instances.

Mine Instance UPIT (NPV)
PGA; (r, δ) = (2, 1)

Best Profit (NPV) Average Profit (NPV) Average # Periods Average Computer
Time [s]

P4HD 293,373,256.00 170,741,330.74 167,048,191.44 7.43 9803.98
Marvin 1,145,655,436.00 201,860,355.53 103,224,207.28 32.14 1730.65

W23 510,973,998.00 210,721,614.33 182,753,331.71 10.25 40,506.99
Zuck large 122,220,280.00 59,989,326.16 58,084,976.43 18.00 11,347.07

McLaughlin limit 1,495,726,474.00 954,741,233.01 876,234,136.37 8.57 30,343.03

When comparing Best Profit with UPIT, it becomes evident that the Best Profit achieved
by PGA does not always match the ideal solution since our problem has additional con-
straints. In this table, the UPIT is a reference value that specifies the profit in an ideal
mine extraction without considering any restrictions. For instance, the P4HD mine shows a
significant difference between the UPIT and Best Profit, whereas for the McLaughlin limit,
the Best Profit is much closer to the UPIT.

The planning period for these mine operations spans several years, often reaching into
decades. Therefore, while computational time may range from a few thousand to several
tens of thousands of seconds, this computer time is relatively small when considering
the lifespan of the operation. Furthermore, making informed and optimized decisions at
the planning stage can significantly increase profitability throughout the operation. So,
the computational time is justified given the extended timeline of these projects and the
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potential improvements in efficiency and profit margins that they enable. It is a practical
investment of time to ensure optimal long-term planning and execution.

4.5. Pushback Optimization

The pushbacks obtained by the algorithm adhere to the typical geometry observed in
real-world deposits. Figure 5 illustrates the solution found for the McLaughlin limit mine.
On the left side, all increment phases are depicted in the plant view, while on the right,
they are individually plotted. The initial increment phases (1 to 5) are assigned to cover the
surface, and the final phases (6 to 10) address the deeper regions of the deposit. Increment
phase 1 marks the starting point of mining exploitation, and increment phase 7 relies on
the exploitation of phases 5 and 6. This precedence is also seen in increment phases 8 and
10, contingent on phases 3 and, 4 and 9.
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Figure 5. Extraction phases (highlighted by color) for the McLaughlin limit instance.

The clustering algorithm generates subgroups of blocks based on their three-dimensional
distance. To do this, all the blocks obtained from the chromosome are used to generate a
specific number of clusters defined by the MeanShift algorithm. Figure 6 displays the clusters
of the McLaughlin limit mine. The enclosed phases, resulting from the clustering, are visible
on the graph’s left side. Meanwhile, the images on the right side reveal the spatial distribution
of the solution. This outcome suggests that since the PGA explores positions within the entire
grid (as outlined by the parallelepiped in the figure), certain phases might encompass areas
without intersecting with the instance’s values. Additionally, Figure 6 highlights that the
earlier phases take precedence over those later.

4.6. Production Scheduling

Even though the focus of the algorithm is determining the pushback, in this section,
we explore the solution found by the PGA by analyzing the production schedule that
is reported by the algorithm. This solution corresponds to the schedule obtained using
Algorithm 1, which mimics the best-case method that is known in commercial applications.
It is important to emphasize that the PGA uses Algorithm 1 as an approximation of the
best possible NPV and that it is relatively fast to compute considering that it is evaluated
many times within the genetic algorithm. Therefore, it is not expected to be the best
possible schedule.
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Figure 6. Clustering in the McLaughlin limit instance. Each cluster is represented by a different color.

The solution returned by the algorithm exhibits an average grade that remains consistent
across different periods. This uniformity in the tonnage-grade relation reflects an expected
homogeneity in the extracted and processed orebody throughout the mine’s life. The grade
for a given period is determined based on the extracted tonnage, and these values are then
allocated to either mining or processing. The average grade can be calculated for each period
from the processed blocks. In examining nine different mines, the extracted tonnage may
fluctuate between periods, but the average grade remains comparable. Figure 7 illustrates the
tonnage-grade ratio for the KD instance derived from the best schedule found. This graph
portrays the total, processed tonnage, and average copper grade over 17 periods. Each bar’s
lower portion represents the processed tonnage, while the upper part comprises the remaining
blocks. In the 3rd and 11th periods, the processing nears plant capacity, but the plant capacity
is underutilized during the other periods.
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It is worth emphasizing that the production plan is not fully operational as there are
significant variations of the ore and waste tonnage across the scheduled periods. This is
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expected to from the fact that the production plan is obtained using the best case algorithm,
as a way to estimate the NPV of a pushback selection during the execution of the GA.
A more realistic production schedule can be obtained afterwards, by using a production
scheduling method (for example, applying PCPSP with additional constraints to respect
the designed pushbacks).

5. Conclusions

This research presented a novel approach to the problem of optimizing the pushbacks
in an open-pit mine, a crucial issue in open-pit mining design. By employing the geometric
concept of truncated cones and stepwise extraction, the study unveiled an inventive vari-
ation to the pre-existing models. This approach acknowledged ore distribution’s innate
complexity and inhomogeneity and successfully incorporated the real-world considerations
of extraction and processing capacities on a parallel genetic algorithm. The PGA operates by
utilizing a master computer networked to multiple auxiliary systems, which concurrently
evaluate the objective function. The selection, crossover, and mutation procedures are
carried out on the main thread, while new solutions are evaluated across a series of threads.

This study’s experiments and in-depth analysis lead to some significant conclusions.
Firstly, the fine-tuning of parameters using IRACE proved effective, with the three distinct
sets of parameters, P1, P2, and P3, demonstrating a significant impact on the PGA perfor-
mance. Although there were variations among these sets, these did not lead to significant
differences in solution quality and computational time, emphasizing the robustness of
the PGA model. Also, the radial base and slope angle parameter combination maximized
profitability in truncated cone generation. In particular, the parameter combination (r, δ)
= (2, 1) offered superior solution quality, consistently achieving the lowest or zero gap
percentages, although it required higher computational resources.

Further observations revealed that, while efficient, the PGA could not find values
near the ideal or optimal solution, as illustrated by the UPIT. However, considering each
mining instance’s complexities and inherent constraints, the PGA generally performed
commendably, finding profitable solutions within acceptable computational times. Thus,
although the computational time may initially seem high, it is practical in the mining
industry context. The planning period of mining operations often spans several years, if
not decades, making optimizing these plans a valuable endeavor. Improved efficiency and
increased profitability over such extended timelines more than justify the computational
time spent. In summary, the PGA has shown its potential as a robust and practical tool
for mine planning, offering a promising avenue for future research and applications in the
mining industry.

The findings of our current study, while providing valuable insights into the domain of
mining optimization, remain constrained to the scenarios of the analyzed mines. Extending
these results to mines with more extensive mining operations would be conjectural, con-
sidering the complex and distinct challenges such operations entail. Moreover, the study
predominantly focused on singular objectives, leaving a considerable void in understand-
ing how simultaneous multiple objectives would influence computational performance.
Multi-objective scenarios often mirror real-world complexities, and understanding them
can offer a more holistic view of mining optimization. Hence, future studies might explore
these concerns in depth.
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