Breno Serrano et Thibaut Vidal
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (2MB) |
Abstract
The Degree-Corrected Stochastic Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence. The standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE). Current techniques for the MLE problem are heuristics, and therefore do not guarantee convergence to the optimum. We present mathematical programming formulations and exact solution methods that can provably find the model parameters and community assignments of maximum likelihood given an observed graph. We compare these exact methods with classical heuristic algorithms based on expectation–maximization (EM). The solutions given by exact methods give us a principled way of measuring the experimental performance of classical heuristics and comparing different variations thereof.
Mots clés
community detection; stochastic block model; mixed integer programming; machine learning; unsupervised learning; local search
Sujet(s): | 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Deutsche Forschungsgemeinschaft, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), CAPES |
Numéro de subvention: | 308528/2018-2, E-26/202.790/ 2019, 277991500/GRK2201 |
URL de PolyPublie: | https://publications.polymtl.ca/58199/ |
Titre de la revue: | Pattern Recognition (vol. 152) |
Maison d'édition: | Elsevier sci ltd |
DOI: | 10.1016/j.patcog.2024.110487 |
URL officielle: | https://doi.org/10.1016/j.patcog.2024.110487 |
Date du dépôt: | 28 mai 2024 10:50 |
Dernière modification: | 30 sept. 2024 04:27 |
Citer en APA 7: | Serrano, B., & Vidal, T. (2024). Community detection in the stochastic block model by mixed integer programming. Pattern Recognition, 152, 110487 (12 pages). https://doi.org/10.1016/j.patcog.2024.110487 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions