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A B S T R A C T

The Degree-Corrected Stochastic Block Model (DCSBM) is a popular model to generate random graphs with
community structure given an expected degree sequence. The standard approach of community detection
based on the DCSBM is to search for the model parameters that are the most likely to have produced
the observed network data through maximum likelihood estimation (MLE). Current techniques for the MLE
problem are heuristics, and therefore do not guarantee convergence to the optimum. We present mathematical
programming formulations and exact solution methods that can provably find the model parameters and
community assignments of maximum likelihood given an observed graph. We compare these exact methods
with classical heuristic algorithms based on expectation–maximization (EM). The solutions given by exact
methods give us a principled way of measuring the experimental performance of classical heuristics and
comparing different variations thereof.
1. Introduction

In the community detection problem, we observe a graph 𝐺 = (𝑉 ,𝐸)
and aim to find groups of vertices (or communities) which present
a similar connection pattern [1,2]. Some important applications of
community detection include the study of social networks [3–5] and
predicting the functional family of proteins [6], among others. One of
the most popular approaches for this task consists in fitting a generative
model (such as the DCSBM) to the observed graph 𝐺, and to search for
the parameters which maximize the likelihood of the model.

In the DCSBM, the number of edges connecting any two vertices 𝑖
and 𝑗 only depends on their group memberships 𝑔𝑖 and 𝑔𝑗 and on the set
of parameters 𝜃𝑖 which control the expected degree of each vertex 𝑖. The
DCSBM is characterized by a 𝐾 ×𝐾 affinity matrix 𝜴 = (𝜔𝑟𝑠), where 𝐾
is the number of communities in the graph. As in many previous works,
we can assume that 𝐾 is available from background knowledge on the
application, or obtained through dedicated estimation techniques (see,
e.g., [7]). The number of edges between any two nodes 𝑖 and 𝑗 is drawn
from a Poisson distribution with mean 𝜃𝑖𝜃𝑗𝜔𝑔𝑖𝑔𝑗 . The probability that

∗ Corresponding author at: School of Management, Technical University of Munich, Germany.
E-mail addresses: breno.serrano@tum.de (B. Serrano), thibaut.vidal@polymtl.ca (T. Vidal).

the observed network 𝐺, represented by the adjacency matrix 𝐴, was
generated from the DCSBM can be expressed as:

𝑃 (𝐴|𝒈,𝜴,𝜽) =
∏

𝑖<𝑗

(𝜃𝑖𝜃𝑗𝜔𝑔𝑖𝑔𝑗 )
𝐴𝑖𝑗

𝐴𝑖𝑗 !
exp (−𝜃𝑖𝜃𝑗𝜔𝑔𝑖𝑔𝑗 )×

∏

𝑖

(

1
2 𝜃

2
𝑖 𝜔𝑔𝑖𝑔𝑖

)𝐴𝑖𝑖∕2

(

1
2𝐴𝑖𝑖

)

!
exp

(

− 1
2 𝜃

2
𝑖 𝜔𝑔𝑖𝑔𝑖

)

(1)

which defines the likelihood function of the DCSBM. As in New-
man [8], we consider in this work the case where 𝜃𝑖𝜃𝑗 = 𝑘𝑖𝑘𝑗

2𝑚 ,
where 𝑘𝑖𝑘𝑗

2𝑚 corresponds to the expected number of edges in the con-
figuration model. After applying the log on both sides and group-
ing together constant terms, the log-likelihood function becomes (cf.
Newman [8]):

log𝑃 (𝐴|𝒈,𝜴) = 1
2

𝑛
∑

𝑖,𝑗

(

𝐴𝑖𝑗 log𝜔𝑔𝑖𝑔𝑗 −
𝑘𝑖𝑘𝑗
2𝑚 𝜔𝑔𝑖𝑔𝑗

)

+ Const. (2)

The MLE problem consists in finding the affinity matrix 𝜴ML and
group membership assignments 𝒈ML that maximize the log-likelihood
function (2).
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The most common methods for this problem are heuristics, which
are not guaranteed to converge to the solution of maximum likelihood.
Theoretical convergence guarantees typically focus on the probability
of recovering the true underlying communities of a graph generated
by the DCSBM in the asymptotic limit where the size of the net-
work grows to infinity. Most studies (see, e.g., [9]) adopt a statistical
and information-theoretic viewpoint and provide thresholds and condi-
tions under which different types of algorithms recover the underlying
community assignments with high probability for different asymptotic
regimes. In this work, instead, we adopt a combinatorial optimization
viewpoint, proposing mixed integer programming (MIP) formulations
and exact solution methods that can provably find the optimal solution
of the maximum likelihood model for an observed graph.

Firstly, we propose a simple descriptive formulation, which re-
sults in a mixed integer non-linear program (MINLP). This model
can be solved to optimality with algorithms based on spatial branch-
and-bound (sBB). Building upon this first formulation, we employ
linearization techniques to produce a mixed integer linear program-
ming (MILP) formulation. To improve the formulation, we rely on a
dynamic generation of valid inequalities along with symmetry-breaking
constraints. Moreover, we carefully analyze the problem to derive tight
bounds on the model variables, permitting significant reductions of
computational effort to find optimal solutions.

Our solution approach is motivated by recent advances in the field
of mathematical programming. Due to extensive research, optimization
solvers have continuously improved, permitting the solution of increas-
ingly larger problems. Even though MILP is -hard in general, it is
now possible to solve instances of dimensions that were absolutely out
of reach of solution methods a few decades ago. This increase in com-
putational efficiency is a consequence of methodological improvements
which, coupled with hardware improvements, have resulted in speed-
up factors of the order of 1011 over two decades (based on the figures
reported in [10]).

The study of exact solution algorithms is also an important method-
ological step for machine learning research. In particular, exact algo-
rithms provide benchmark solutions that can be used to evaluate the
performance of heuristics, measuring how far they are from the optima
of the maximum likelihood model. To initiate such an analysis, we con-
sider three basic variants of the EM algorithm, and run computational
experiments to compare the heuristic solutions with those found by the
exact solution approaches in terms of likelihood and proximity to the
ground truth.

Therefore, this work makes a significant step towards develop-
ing exact solution methods for the problem of MLE of the DCSBM.
Specifically, our contribution is threefold. First, we propose a MILP
formulation and an optimal solution algorithm for the problem. To
the best of our knowledge, this is the first work to investigate exact
methods for the DCSBM. Second, we perform computational exper-
iments on synthetic graphs to assess the performance of the exact
methods, showing that the algorithm based on the MILP formulation
clearly outperforms that of the MINLP formulation. Third, we com-
pare the exact methods with some classical heuristics based on the
EM algorithm. These experiments show that MIP approaches are an
important asset to evaluate the performance of heuristics and highlight
the importance of optimal algorithms in machine learning research. All
data sets and source codes needed to reproduce our results are available
at: github.com/vidalt/Optimal-SBM.

The remainder of this paper is structured as follows. Section 2 draws
an overview of related works. Section 3 introduces our mathematical
programming formulations and solution techniques. Section 4 describes
the heuristic approaches and Section 5 presents the computational ex-
periments comparing the proposed solution methods. Finally, Section 6
2

concludes.
2. Related works

A large body of literature on SBMs focuses on community recov-
ery from an information-theoretical and statistical viewpoint. Special
cases of the SBM have regularly been considered, such as the (bal-
anced) Planted Partition Model (PPM). We refer the reader to the
survey by Abbe [9] for a detailed description of different recovery
requirements and consistency analyses of various algorithms.

Some studies have explored exact solution methods for community
detection based on modularity maximization [11,12], which is known
to be -hard [13]. Zhang and Moore [14] and Newman [8] show
that modularity maximization is equivalent to MLE of the PPM. The
problem of modularity maximization is directly formulated as a mixed
integer quadratic program (MIQP) by Xu et al. [12] and solved using
a branch-and-bound method. The authors discuss the use of symmetry-
breaking constraints to improve the efficiency of the branch-and-bound
exploration. Aloise et al. [11] employ techniques based on column
generation to improve on previous works [12], reporting a reduction
in computing time, and solving larger instances with up to 512 vertices
to optimality (vs. 105 vertices in previous works). Recently, Aref et al.
[15] proposed a branch-and-cut algorithm for modularity optimization
that can more efficiently solve previously challenging instances. Mod-
ularity maximization (equivalently MLE of the PPM) is, however, a
very specialized case of community detection, and no exact solution
algorithm has been proposed for MLE of the general SBM to date.

Several studies proposed algorithms for community recovery based
on SDP relaxations of the MLE model [16–18], leading to new results
regarding the recovery of communities in SBMs with general 𝐾 under
an implicit assumption of strong assortativity. Amini and Levina [19]
proposed an SDP relaxation that is tighter than previous ones and works
for a broader class of SBMs, including for disassortative structures.

Del Pia et al. [20] considered the problem of exact community
recovery for the assortative planted bisection model and discussed the
theoretical performance of linear programming (LP) relaxations of the
minimum bisection problem for community recovery. They derived
sufficient and necessary conditions for recovery using the LP relaxation
for different asymptotic regimes.

Algorithms based on expectation–maximization for MLE have been
investigated, for example, by [21] for the SBM with two communities.
However, their method is practical only for small graphs. For large
graphs, they introduce a Bayesian estimation method based on Gibbs
sampling. The EM algorithm is also used to maximize the pseudo-
likelihood of the SBM parameters in Amini et al. [22]. The general
idea of pseudo-likelihood is to approximate the likelihood by ignoring
some of the dependency structure of the data to make the model more
tractable.

Metaheuristics have been applied to various related clustering prob-
lems. Among others, Gribel and Vidal [23] proposed a hybrid ge-
netic algorithm for the minimum sum-of-squares clustering problem,
and Hansen et al. [24] proposed a variable neighborhood search heuris-
tic for normalized cut clustering.

More broadly, several related works investigated the application
of mixed integer programming to classical machine learning mod-
els. Mixed integer optimization has been used to learn optimal de-
cision trees and decision diagrams [25,26], Gaussian mixture models
(GMM) [27,28], ramp-loss and hard-margin loss SVMs [29,30], among
others, as well as to find optimal counterfactual explanations [31].
We refer to [32,33] for some surveys on mathematical programming
applied to popular machine learning models.

3. Solving the DCSBM to optimality

This section introduces mathematical programming formulations for
the MLE problem given by Eq. (2). We first present a descriptive for-
mulation as a MINLP model. Then, we employ different techniques to
linearize the model, leading to a MILP formulation. To further improve
computational efficiency, we discuss the use of bounds-tightening and

symmetry-breaking techniques.

https://github.com/vidalt/Optimal-SBM
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3.1. Formulation as a mixed integer non-linear program

Let 𝑧𝑖𝑟 be a binary variable which takes value 1 if vertex 𝑖 ∈ 𝑉 is
assigned to community 𝑟 ∈  and 0 otherwise, where  = {1,… , 𝐾}
represent the possible communities. The continuous variables 𝜔𝑟𝑠, for
𝑟, 𝑠 ∈ , represent the elements of the connectivity matrix 𝜴. The
MLE problem (2) can be modeled as the following MINLP, where we
minimize the negative log-likelihood (the constant term was omitted):

minimize
𝐙,𝜴

1
2

𝑛
∑

𝑖,𝑗

𝐾
∑

𝑟,𝑠
𝑓𝑖𝑗 (𝜔𝑟𝑠) 𝑧𝑖𝑟𝑧𝑗𝑠 (3)

subject to
𝐾
∑

𝑟=1
𝑧𝑖𝑟 = 1 ∀𝑖 ∈ 𝑉 (4)

𝑧𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑟 ∈  (5)

𝜔𝑟𝑠 ∈ R+ ∀𝑟, 𝑠 ∈  (6)

where

𝑓𝑖𝑗 (𝜔𝑟𝑠) = −𝐴𝑖𝑗 log𝜔𝑟𝑠 +
𝑘𝑖𝑘𝑗
2𝑚 𝜔𝑟𝑠. (7)

n this model, Constraints (4) ensure that each vertex is assigned to
xactly one community. This model can be solved to optimality by
lobal optimization solvers such as Couenne [34]. However, solution
ime quickly increases with the size of the networks. In the next
ections, we propose some techniques to linearize Model (3)–(6) into

MILP along with additional refinements that permit a significant
eduction of solution time in comparison to the MINLP.

.2. Formulation as a mixed integer linear program

The linearization of the MINLP formulation is done in several steps.
irst of all, we linearize the function 𝑓𝑖𝑗 (𝜔𝑟𝑠) by piecewise outer-
pproximation. The function 𝑓𝑖𝑗 is convex everywhere in its domain,
or 𝐴𝑖𝑗 > 0, since: 𝜕2𝑓𝑖𝑗

𝜕𝜔2 = 𝐴𝑖𝑗
𝜔2 > 0, ∀𝜔 ∈ R+. Thus, the value of 𝑓𝑖𝑗

s always greater than or equal to its tangent calculated at any point
�̃� ∈ R+:

𝑖𝑗 (𝜔) ≥ 𝑎𝑖𝑗�̃� 𝜔 + 𝑏𝑖𝑗�̃� ∀𝜔 ∈ R+, (8)

here the coefficients 𝑎𝑖𝑗�̃� and 𝑏𝑖𝑗�̃� defining the tangent line are given
by:

𝑎𝑖𝑗�̃� = −
𝐴𝑖𝑗

�̃�
+

𝑘𝑖𝑘𝑗
2𝑚

(9)

𝑖𝑗�̃� = 𝑓𝑖𝑗 (�̃�) − 𝑎𝑖𝑗�̃� �̃� = 𝐴𝑖𝑗 (1 − log �̃�). (10)

y making use of this property, we introduce variables 𝑓𝑖𝑗𝑟𝑠 to represent
he value of 𝑓𝑖𝑗 (𝜔𝑟𝑠), and reformulate Model (3)–(6) into:

inimize
𝐙,𝜴,𝐅

1
2

𝑛
∑

𝑖,𝑗

𝐾
∑

𝑟,𝑠
𝑓𝑖𝑗𝑟𝑠 𝑧𝑖𝑟𝑧𝑗𝑠 (11)

ubject to
𝐾
∑

𝑟=1
𝑧𝑖𝑟 = 1 ∀𝑖 ∈ 𝑉 (12)

𝑓𝑖𝑗𝑟𝑠 ≥ 𝑎𝑖𝑗�̃� 𝜔𝑟𝑠 + 𝑏𝑖𝑗�̃� ∀𝑖, 𝑗 ∈ 𝑉 , ∀𝑟, 𝑠 ∈ , ∀�̃� ∈ R+ (13)

𝑧𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , ∀𝑟 ∈  (14)

𝜔𝑟𝑠 ∈ R+ ∀𝑟, 𝑠 ∈  (15)

𝑓𝑖𝑗𝑟𝑠 ∈ R ∀𝑖, 𝑗 ∈ 𝑉 , ∀𝑟, 𝑠 ∈ . (16)

his model contains an infinite number of constraints of type (13), one
or every �̃� ∈ R+.

Next, we linearize the objective function. Let 𝑦𝑖𝑗𝑟𝑠 denote the prod-
ct of the binary variables 𝑧𝑖𝑟 and 𝑧𝑗𝑠 in the objective function (𝑦𝑖𝑗𝑟𝑠 =
𝑖𝑟𝑧𝑗𝑠). The product of two binary variables can be expressed as a set
f linear constraints:
3

𝑖𝑟 − 𝑦𝑖𝑗𝑟𝑠 ≥ 0, (17)
𝑗𝑠 − 𝑦𝑖𝑗𝑟𝑠 ≥ 0, (18)

− 𝑧𝑖𝑟 − 𝑧𝑗𝑠 + 𝑦𝑖𝑗𝑟𝑠 ≥ 0. (19)

s a result, the objective function can be expressed as 𝑓𝑖𝑗𝑟𝑠 𝑦𝑖𝑗𝑟𝑠, which
s a product of a continuous and a binary variable.

To linearize the expression 𝑓𝑖𝑗𝑟𝑠 𝑦𝑖𝑗𝑟𝑠 , we introduce continuous vari-
bles 𝑥𝑖𝑗𝑟𝑠 = 𝑓𝑖𝑗𝑟𝑠 𝑦𝑖𝑗𝑟𝑠 = 𝑓𝑖𝑗𝑟𝑠 𝑧𝑖𝑟𝑧𝑗𝑠. The non-linear expression 𝑓𝑖𝑗𝑟𝑠 𝑦𝑖𝑗𝑟𝑠
an be linearized with the big-M technique by introducing additional
onstraints:

𝑖𝑗𝑟𝑠 ≤ 𝑀 𝑦𝑖𝑗𝑟𝑠, (20)

𝑖𝑗𝑟𝑠 ≥ 𝑀 𝑦𝑖𝑗𝑟𝑠, (21)

𝑖𝑗𝑟𝑠 ≥ 𝑓𝑖𝑗𝑟𝑠 −𝑀(1 − 𝑦𝑖𝑗𝑟𝑠). (22)

onstraints (22) can be combined with Constraints (13), yielding:

𝑖𝑗𝑟𝑠 ≥ 𝑎𝑖𝑗�̃� 𝜔𝑟𝑠 + 𝑏𝑖𝑗�̃� −𝑀(1 − 𝑦𝑖𝑗𝑟𝑠) ∀�̃� ∈ R+. (23)

It is well known that formulations with big-M constants suffer from a
weak continuous relaxation (and therefore from larger solution times)
if the lower and upper bounds (𝑀 and 𝑀) are large in absolute
value [29,35]. Section 3.4 proposes some natural values for these
bounds. The resulting model is a MILP, and it can be solved by
conventional branch-and-cut algorithms.

3.3. Dynamic constraints generation

As mentioned previously, the MILP model has an infinite number
of constraints of type (23). To solve it in practice, we initially only
consider a small set of these constraints, for a set of break-points �̃�𝑝
ndexed by 𝑝 ∈ . Then, new constraints are dynamically introduced
n the model during the solution process. Whenever an integer-feasible
olution is found during the branch-and-bound, the algorithm checks if
ny constraint given by (23) is violated with a tolerance of 𝜖. In this
ase, the solution is declared infeasible and the violated constraints
re added to the model. In effect, the method iteratively refines the
pproximation of the function 𝑓𝑖𝑗 until the desired precision of 𝜖 is
chieved.

.4. Bounds tightening

Given a fixed assignment of vertices to communities, the optimal
alue of 𝜔𝑟𝑠 can be found by solving a convex minimization problem
y differentiation. We show that 𝜔𝑟𝑠 is bounded above by 2𝑚𝜌:

∗
𝑟𝑠 = 2𝑚

(
∑

𝑖,𝑗 𝐴𝑖𝑗𝑧𝑖𝑟𝑧𝑗𝑠
∑

𝑖,𝑗 𝑘𝑖𝑘𝑗𝑧𝑖𝑟𝑧𝑗𝑠

)

≤ 2𝑚𝜌, (24)

here

∶= max
𝑖,𝑗

{ 𝐴𝑖𝑗

𝑘𝑖𝑘𝑗

}

. (25)

To see that (24) holds, observe that it is equivalent to:
∑

𝑖,𝑗

(

1
𝜌𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗

)

𝑧𝑖𝑟𝑧𝑗𝑠 ≤ 0 (26)

which is satisfied since:

𝜌 ≥
𝐴𝑖𝑗

𝑘𝑖𝑘𝑗
∀𝑖, 𝑗 ∈ 𝑉 (27)

by definition of 𝜌 in Eq. (25).
Let 𝜔𝐿

𝑟𝑠 and 𝜔𝑈
𝑟𝑠 denote the lower and upper bounds, respectively,

on 𝜔𝑟𝑠. We rely on these bounds to derive bounds 𝑀𝑖𝑗𝑟𝑠 ≤ 𝑓𝑖𝑗𝑟𝑠 ≤ 𝑀𝑖𝑗𝑟𝑠.

Recall that 𝑓𝑖𝑗 (𝜔𝑟𝑠) = −𝐴𝑖𝑗 log𝜔𝑟𝑠 +
𝑘𝑖𝑘𝑗
2𝑚 𝜔𝑟𝑠.

If 𝐴𝑖𝑗 = 0, then the expression simplifies to:
𝑘𝑖𝑘𝑗 𝜔 (28)
𝑓𝑖𝑗 (𝜔𝑟𝑠) = 2𝑚 𝑟𝑠
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𝜔

and therefore 𝑓𝑖𝑗𝑟𝑠 can be bounded by 0 ≤ 𝑓𝑖𝑗𝑟𝑠 ≤
𝑘𝑖𝑘𝑗
2𝑚 𝜔𝑈

𝑟𝑠.
Otherwise, if 𝐴𝑖𝑗 ≠ 0, a lower bound can be obtained by calculating

he global minimum of 𝑓𝑖𝑗 (𝜔𝑟𝑠) with respect to 𝜔𝑟𝑠. The minimum can
e found by solving
𝜕𝑓𝑖𝑗
𝜕𝜔𝑟𝑠

= −
𝐴𝑖𝑗

𝜔𝑟𝑠
+

𝑘𝑖𝑘𝑗
2𝑚

= 0 (29)

mplying

�̂�𝑟𝑠 =
2𝑚𝐴𝑖𝑗

𝑘𝑖𝑘𝑗
(30)

and therefore

𝑀𝑖𝑗𝑟𝑠 = −𝐴𝑖𝑗 log
2𝑚𝐴𝑖𝑗
𝑘𝑖𝑘𝑗

+ 𝐴𝑖𝑗 = 𝐴𝑖𝑗

(

1 − log𝐴𝑖𝑗 + log 𝑘𝑖𝑘𝑗
2𝑚

)

. (31)

ince 𝑓𝑖𝑗 (𝜔𝑟𝑠) is convex, the upper bound 𝑀𝑖𝑗𝑟𝑠 can be defined by
alculating the function value at the extreme points of the domain
𝜔𝐿
𝑟𝑠, 𝜔

𝑈
𝑟𝑠]:

𝑀𝑖𝑗𝑟𝑠 = max{𝑓𝑖𝑗 (𝜔𝐿
𝑟𝑠), 𝑓𝑖𝑗 (𝜔

𝑈
𝑟𝑠)}. (32)

Overall, the upper and lower bounds are given by:

𝑀𝑖𝑗𝑟𝑠 =

{ 𝑘𝑖𝑘𝑗
2𝑚 𝜔𝑈

𝑟𝑠, if 𝐴𝑖𝑗 = 0

max{𝑓𝑖𝑗 (𝜔𝐿
𝑟𝑠), 𝑓𝑖𝑗 (𝜔

𝑈
𝑟𝑠)}, if 𝐴𝑖𝑗 ≠ 0

(33)

𝑀𝑖𝑗𝑟𝑠 ∶=

{

0, if 𝐴𝑖𝑗 = 0

𝐴𝑖𝑗 (1 − log𝐴𝑖𝑗 + log 𝑘𝑖𝑘𝑗
2𝑚 ), if 𝐴𝑖𝑗 ≠ 0 .

(34)

For numerical stability, we also set a lower bound 𝜔𝐿
𝑟𝑠 = 10−12 since

unction 𝑓𝑖𝑗 is not defined at 𝜔𝑟𝑠 = 0.

.5. Symmetry-breaking constraints

In the formulations discussed above, any permutation of the group
ndices in the community assignment variables 𝐙 leads to an equivalent
olution. Thus, each solution is, in practice, represented 𝐾! times in the
odel, leading to an inefficient solution process. To circumvent this

ssue, Plastria [36] proposed a set of linear constraints that limits the
et of feasible solutions by eliminating solutions which are equivalent.
his is done by enforcing the model to accept only lexicographically
inimal solutions, i.e., by forcing community 𝑟 to always contain the

owest numbered object (vertex) which does not belong to any of the
revious communities 1,… , 𝑟−1. As shown in [36], this can be achieved
y including the following constraints:

11 = 1 (35)

𝑗−1

𝑖=2

𝑟−1
∑

𝑙=1
𝑧𝑖𝑙 −

𝑟
∑

𝑙=1
𝑧𝑗𝑙 ≤ 𝑗 − 3 ∀𝑟 ∈ {2,… , 𝐾 − 1},∀𝑗 ∈ {𝑟,… , 𝑛} (36)

he last cluster 𝐾 is not associated with any constraint, as it will
utomatically contain all remaining objects which do not belong to
ny of the previous clusters. These constraints effectively reduce the
ymmetry of the problem and speed-up the solution method.

. Heuristics for the DCSBM

The mathematical programming approaches discussed in Section 3
ermit to find optimal solutions of the MLE model with a certificate of
lobal optimality. In practice, however, they are limited to fairly small
roblems since their computational effort quickly rises as a function of
he number of nodes in the graph. In contrast, heuristic methods usually
olve a problem in reduced computational time but do not provide
olution-quality guarantees. We review three natural variants of the EM
lgorithm based on the method proposed by Karrer and Newman [37]
or community detection using the DCSBM. These approaches are based
n a local search heuristic on the space of community assignments.
ince we can now find optimal solutions, we conduct a disciplined
xperimental analysis of these heuristics to measure how far they are
rom the known optima of the MLE model.
4

.1. Expectation–maximization algorithm

The EM algorithm was introduced by Dempster et al. [38] as a gen-
ral iterative scheme for finding the parameter estimates of maximum
ikelihood or maximum a posteriori probability (MAP) of statistical
odels with (unobserved) latent variables. The EM algorithm has been

pplied to a variety of models in machine learning, including Gaussian
ixture models (GMM) and hidden Markov models (HMM) [39], as
ell as data clustering [40,41]. The algorithm iteratively performs an
xpectation step (E-step) and a maximization step (M-step). In the
ontext of community detection, the E-step searches for community
ssignments 𝐙 that maximize the likelihood function given a connec-
ivity matrix 𝜴, whereas the M-step estimates 𝜴 using the current
ssignments 𝐙. Each step is guaranteed to increase the log-likelihood
unction, and therefore the method converges towards a local opti-
um. We describe the M-step in Section 4.2 and discuss three natural

lgorithmic variations for the E-step in Section 4.3.

.2. Maximization step (M-step)

The maximization step consists in estimating the parameters 𝜴
hich maximize the likelihood function given a fixed assignment of
ertices to communities 𝐙. The optimal value for 𝜔𝑟𝑠 can be calculated
n closed form as:

∗
𝑟𝑠 = 2𝑚

(
∑

𝑖,𝑗 𝐴𝑖𝑗𝑧𝑖𝑟𝑧𝑗𝑠
∑

𝑖,𝑗 𝑘𝑖𝑘𝑗𝑧𝑖𝑟𝑧𝑗𝑠

)

=
2𝑚 ⋅ 𝑚𝑟𝑠
𝜅𝑟𝜅𝑠

(37)

where 𝑚𝑟𝑠 =
∑𝑛

𝑖,𝑗 𝐴𝑖𝑗𝑧𝑖𝑟𝑧𝑗𝑠 is the number of edges between groups 𝑟 and
𝑠, and 𝜅𝑟 =

∑𝑛
𝑖 𝑘𝑖𝑧𝑖𝑟 is the sum of the degrees of the vertices in group 𝑟.

4.3. Expectation step (E-step)

The expectation step consists in searching for community assign-
ments 𝐙 that maximize the likelihood given the current affinity matrix
𝜴. This step corresponds to an -hard combinatorial optimization
problem [22]. There are different possible ways to perform the E-step.
We highlight three main approaches which, combined with the M-step,
result in three variations of the EM algorithm reported in Algorithms
1, 2, and 3. In all cases, random community assignments are used as
initial state.

1 Initialize community assignments 𝐙;

2 repeat

3 𝜴 ← MaximizationStep(𝐙);

4  ← log𝑃 (𝐴|𝜴,𝐙);

5 repeat

6 for each vertex 𝑖 ∈ 𝑉 and group 𝑟 ∈  do

7 Consider 𝐙′ constructed from 𝐙 by relocating

vertex 𝑖 to group 𝑟;

8 ′ ← log𝑃 (𝐴|𝜴,𝐙′);

9 if ′ >  then

10 Apply relocation and update solution:

11 𝐙 ← 𝐙′;  ← ′;

12 until No improving relocation can be found;

13 until The likelihood function can no longer be improved;

Algorithm 1: EM-LS1 algorithm
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1 Initialize community assignments 𝐙;

2 𝜴 ← MaximizationStep(𝐙);

3  ← log𝑃 (𝐴|𝜴,𝐙);

4 repeat

5 repeat

6 for each vertex 𝑖 ∈ 𝑉 and group 𝑟 ∈  do

7 Consider 𝐙′ constructed from 𝐙 by relocating

vertex 𝑖 to group 𝑟;

8 𝜴′ ← MaximizationStep(𝐙′);

9 ′ ← log𝑃 (𝐴|𝜴′,𝐙′);

10 if ′ >  then

11 Apply relocation and update solution:

12 𝐙 ← 𝐙′;  ← ′; 𝜴 ← 𝜴′;

13 until No improving relocation can be found;

14 until The likelihood function can no longer be improved;

Algorithm 2: EM-LS2 algorithm

1 Initialize community assignments 𝐙;

2 repeat

3 𝜴 ← MaximizationStep(𝐙);

4 𝐙 ← E-exact (𝜴) (Find 𝐙 by solving Model (38)–(40))

5 until The likelihood function can no longer be improved;

Algorithm 3: EM-exact algorithm

EM-LS1 algorithm: Local search on the community assignment variables.
The first variant, based on a local search approach, is described in
Algorithm 1. Line 3 of the algorithm performs the M-step, while lines
5–12 correspond to the first variant of the E-step. For a fixed value of
𝜴, the method searches for community assignments 𝐙 by iterating over
each vertex 𝑖 of the graph and relocating it to a different community 𝑟
whenever it leads to an improvement in the likelihood function. This
procedure is repeated until no more improving relocation exists. It is
important to note that 𝜴 stays fixed during the improvement phase
based on relocation (E-step) and is only optimized in the M-step.

EM-LS2 algorithm: Local search integrated with M-step. This variant is
described in Algorithm 2. Here the value of 𝜴 is re-estimated (with
the M-step) each time a vertex relocation is evaluated. Therefore, the
maximization step is ‘‘embedded’’ into the expectation step (line 8).
Calculating the value of the likelihood function can be done in 𝑂(𝐾2𝑛2)
elementary operations from scratch. Yet, Karrer and Newman [37]
described how to find the best relocation move more efficiently by
instead evaluating the change in the likelihood, exploiting the property
that, when a vertex changes groups, only some terms of the likelihood
function need to be updated. Thus, finding the community relocation
that produces the maximum increase in the likelihood function can be
done in time 𝑂(𝐾(𝐾 + �̄�)) on average, where �̄� is the average degree of

vertex in 𝐺.

M-exact algorithm: Exact community assignments. Finally, as shown
n Algorithm 3, the complete E-step can be formulated as an integer
uadratic program (IQP) of Eqs. (38)–(40) and solved using an exact
olution method.

inimize
𝐙

1
2

𝑛
∑

𝐾
∑

𝑓𝑖𝑗 (𝜔𝑟𝑠) 𝑧𝑖𝑟𝑧𝑗𝑠 (38)
5

𝑖,𝑗 𝑟,𝑠
ubject to
𝑞
∑

𝑟=1
𝑧𝑖𝑟 = 1 ∀𝑖 ∈ 𝑉 (39)

𝑧𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑟 ∈  (40)

his variant of EM effectively applies, in turn, an optimal expectation
tep and an optimal maximization step. It is, therefore, the approach
hat is closest to the canonical EM concept. Model (38)–(40) seeks
ommunity assignments 𝐙 that maximize the likelihood, for a fixed 𝜴.
n contrast to Model (3)–(6), the terms 𝑓𝑖𝑗 (𝜔𝑟𝑠) in the objective function
re now constant. Despite this simplification, the E-step remains an
-hard problem [22]. It can be solved to optimality using standard
IP solvers based on branch-and-cut, such as Gurobi and CPLEX,

or small and medium instances. It is less scalable, but noteworthy as
benchmark to evaluate the impact of optimal expectation steps in

M heuristics. This variant of the EM algorithm effectively becomes
matheuristic [42], a term used to refer to methods that combine
etaheuristics with mathematical programming components.

. Computational experiments

The goals of our computational experiments are twofold.

1. We compare the performance of the proposed exact methods in
terms of computational time and scalability.

2. Using our knowledge of optimal solutions and bounds, we mea-
sure to which extent the heuristics can find the true optimum of
the maximum likelihood estimation problem.

The experiments were performed on an Intel Xeon E5-2620 2.1 GHz
rocessor machine with 128 GB of RAM and CentOS Linux 7 (Core)
perating system. The high-level programming language used in the
mplementation was Julia [43], and the package JuMP [44] was used
s the modeling language for the exact methods. The underlying opti-
ization solvers adopted for the exact methods were Couenne [34]

s the global optimization solver for the MINLP and CPLEX for the
ILP. For a fair comparison between the methods, we set the precision

or dynamic constraints generation to a value of 𝜖 = 10−6 such that
t is consistent with the numerical-precision parameters (e.g., relative
ap and convergence tolerances) of the solvers. For reproducibility,
e provide our source code and all experimental data at github.com/
idalt/Optimal-SBM.

.1. Instances

Synthetic graphs allow us to control the factors that might influ-
nce the difficulty of community detection, such as network size and
ommunity structure (e.g., degree of separability and assortativity).
herefore, we generated two groups of data sets, denoted S1 and S2,
omposed of synthetic graphs produced by the DCSBM. These graphs
ontain a number of vertices 𝑛 ranging from 8 to 16 and a number
f edges 𝑚 ranging from 4 to 115. This problem scale allows to find
ptimal solutions and, in the largest cases, still challenges the solution
apabilities of the exact methods.

For group S1, we set 𝐾 = 2 and generated graphs with 𝑛 ∈
8, 10, 12, 14, 16}. Since 𝐾 = 2, the affinity matrix 𝜴 of the model has

three parameters: two diagonal elements 𝜔11, 𝜔22 and one off-diagonal
𝜔12 = 𝜔21. For each (𝜔in, 𝜔out) ∈ {0.1, 0.4, 0.6, 0.9}2, such that 𝜔in ≠ 𝜔out,
we sampled 𝜔11, 𝜔22 from  (𝜔in − 0.1, 𝜔in + 0.1) and we sampled 𝜔12
rom  (𝜔out −0.1, 𝜔out +0.1), where  (𝑎, 𝑏) is the uniform distribution

in the interval [𝑎, 𝑏]. This gives 4 × 3 = 12 combinations of values
for (𝜔in, 𝜔out). Six combinations are assortative (with 𝜔in > 𝜔out) and
six combinations are disassortative (with 𝜔in < 𝜔out). For statistical
significance, we generated 10 instances for each combination, yielding
a total of 5 × 4 × 3 × 10 = 600 instances.

Data group S2 is composed of strongly assortative graphs with 𝐾 ∈
{2, 3}, 𝑛 ∈ {8, 10, 12, 14, 16} and three levels of community strength:

low, medium and high. For each level of community strength, we

https://github.com/vidalt/Optimal-SBM
https://github.com/vidalt/Optimal-SBM
https://github.com/vidalt/Optimal-SBM
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Fig. 1. Speed ratios between the solution time of the methods without and with SBC (MINLP on the left and MILP on the right).
c
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Table 1
Range of possible values for the diagonal and off-diagonal elements of the affinity
matrix 𝜴.

Low Medium High

𝜔𝑟𝑟 [0.4, 1.0] [0.6, 1.0] [0.8, 1.0]
𝜔𝑟𝑠 (𝑟 ≠ 𝑠) [0.2, 0.4] [0.1, 0.3] [0.0, 0.2]

sampled the diagonal and off-diagonal elements of 𝜴 from a uniform
istribution in the corresponding interval given by Table 1. For each
onfiguration, we generated a total of 10 instances, leading to 2 × 3 ×
× 10 = 300 instances.

.2. Performance of the exact methods

For each instance in S1 and S2, we run the two exact methods
MINLP and MILP) with a time limit of 600 s. To assess the impact of
he symmetry-breaking constraints (SBC) in the solution time, we run
ach method twice: with (SBC) and without them (NoSBC).

eneral Comparison. Tables 2 and 3 present the following results for
he exact methods: number of instances solved to optimality (‘‘Opt’’),
ercentage gap (‘‘Gap’’), solution time in seconds (‘‘Time’’), and number
f nodes explored in the branch-and-bound tree (‘‘Nodes’’). The values
eported in both tables are averaged over the 10 instances of each type
except for ‘‘Opt’’). The exact methods’ percentage gap is calculated
ased on the log-likelihood function (including the constant terms)
s Gap = (UB − LB)∕UB, where LB and UB are the lower and upper
bjective bounds. A summary line is included in the bottom of each
able showing the total number of instances solved to optimality (for
olumn ‘‘Opt’’) and average results for all other columns.

As seen in these results, the MILP is clearly faster than the MINLP
or both groups of data sets. When 𝐾 = 2, the MILP can optimally
olve all instances with up to 𝑛 = 14 vertices, whereas the MINLP
s already unable to find the optimum for some instances with 14
ertices. This visible reduction in solution time is a consequence of a
ore efficient branch-and-bound exploration. Indeed, for the instances

hat are solved to optimality, the MILP visits fewer search nodes than
he MINLP. For larger instances (e.g., when 𝐾 = 3 in Table 3), both
ethods have difficulties to consistently find optimal solutions within

he time limit. However, for instances that could not be solved to
ptimality, percentage gaps are generally much smaller for the MILP.
hese results clearly illustrate that the DCSBM is indeed challenging to
olve to optimality.

mpact of the symmetry-breaking constraints. Fig. 1 illustrates the
mpact of using SBC with the MINLP (on the left) and with the MILP
6

i

(on the right). It shows the speed ratio between the solution time of the
method without and with SBC, depending on the number of vertices in
data group S1. The results are summarized as boxplots, with whiskers
that extend to 1.5 times the interquartile range. Points outside this
range are marked as outliers and noted with a ‘‘◦’’.

As highlighted on Fig. 1, the use of SBC has a beneficial impact on
the MINLP and MILP solution methods. Even in the simple case with
𝐾 = 2, adding SBC clearly improves the solution time of both exact
methods for the great majority of instances. The improvement becomes
more marked as 𝑛 increases, with solution times up to 2x faster.

Comparison of the formulations. Finally, Fig. 2 compares the solution
times of the exact methods on data sets of group S1. As 𝑛 increases,
the variance in the distribution of the speed ratio increases. The speed
ratios are nonetheless always greater than 1, meaning that the MILP
approach is faster than the MINLP, regardless of the use of the SBC. In
some cases, the MILP is as high as 32 times faster than the MINLP.

5.3. Performance of the heuristic methods

To evaluate the performance of the heuristic solution approaches,
we compare their solutions to the solutions found by the exact methods.
For each instance in S1 and S2, we run the three EM variants for 50
trials (with different random starts). As an additional reference and
baseline, we also provide the results of a standard method for spectral
clustering (see, e.g., [45–47]). For each instance the relative percentage
gap is calculated as:

Gap (%) = 100 × OBJ − BKS
BKS (41)

where OBJ is the objective value of the heuristic solution, and BKS
(best-known solution) is the objective value of the optimal or best
integer-feasible solution found by the MILP with SBC.

Tables 4 and 5 present average gap values and solution times out
of the 50 trials for data groups S1 and S2, respectively. As visible from
these results, the solution times of EM-LS1 and EM-LS2 are generally
lose, with EM-LS1 being slightly faster on average. The solution time

of EM-exact is orders of magnitude higher than that of the other
heuristics since it involves the exact solution of a MIP during each
expectation step, whereas spectral appears to be the fastest method
overall.

In terms of solution quality, EM-LS2 achieves a lower gap on aver-
ge, compared to EM-LS1. The comparison with EM-exact leads to
ore contrasted observations: for data group S1, EM-exact achieved

he lowest average gap, whereas for S2 it was outperformed by EM-
S2. For some settings, the average gap obtained by the heuristics

s small or even negative (e.g., for S2, with 𝐾 = 3, 𝑛 = 16 and
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Table 2
General performance of the exact methods (MINLP vs. MILP) for data group S1, with SBC and without them (NoSBC).
𝑛 𝜔in 𝜔out MINLP MILP

NoSBC SBC NoSBC SBC

Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes

8 0.1 0.4 10 0.00 6.3 306.3 10 0.00 3.7 167.6 10 0.00 0.8 92.5 10 0.00 0.6 59.6
0.6 10 0.00 10.1 587.4 10 0.00 6.6 274.7 10 0.00 1.2 166.6 10 0.00 0.8 86.9
0.9 10 0.00 11.0 569.3 10 0.00 7.0 216.7 10 0.00 1.2 120.0 10 0.00 0.8 60.3

0.4 0.1 10 0.00 6.5 388.5 10 0.00 4.2 203.8 10 0.00 0.9 140.7 10 0.00 0.7 69.4
0.6 10 0.00 12.9 730.0 10 0.00 7.8 349.5 10 0.00 2.0 298.5 10 0.00 1.2 146.4
0.9 10 0.00 14.9 661.3 10 0.00 9.7 317.6 10 0.00 2.1 271.0 10 0.00 1.3 138.4

0.6 0.1 10 0.00 8.2 459.6 10 0.00 6.0 266.7 10 0.00 1.1 157.4 10 0.00 0.8 104.5
0.4 10 0.00 14.4 704.2 10 0.00 9.2 306.8 10 0.00 2.0 302.5 10 0.00 1.2 148.2
0.9 10 0.00 19.5 796.1 10 0.00 11.9 326.3 10 0.00 2.8 340.7 10 0.00 1.7 171.6

0.9 0.1 10 0.00 10.2 463.8 10 0.00 6.9 238.5 10 0.00 1.0 126.6 10 0.00 0.8 73.2
0.4 10 0.00 16.1 786.1 10 0.00 10.4 333.5 10 0.00 2.4 359.6 10 0.00 1.5 179.0
0.6 10 0.00 16.5 797.9 10 0.00 10.8 381.1 10 0.00 2.6 359.8 10 0.00 1.6 210.5

10 0.1 0.4 10 0.00 27.4 2 056.3 10 0.00 15.4 915.9 10 0.00 3.7 608.7 10 0.00 2.6 311.7
0.6 10 0.00 28.6 1 676.5 10 0.00 17.7 839.2 10 0.00 3.6 440.6 10 0.00 2.3 223.7
0.9 10 0.00 39.4 2 143.0 10 0.00 22.6 999.1 10 0.00 4.2 397.1 10 0.00 2.6 192.2

0.4 0.1 10 0.00 22.7 1 585.0 10 0.00 15.9 988.8 10 0.00 3.1 514.9 10 0.00 2.1 301.7
0.6 10 0.00 49.5 3 625.7 10 0.00 28.8 1 528.7 10 0.00 8.5 1 347.8 10 0.00 5.4 672.1
0.9 9 0.00 106.9 17 598.8 10 0.00 31.9 1 433.4 10 0.00 9.0 1 198.6 10 0.00 5.9 584.7

0.6 0.1 10 0.00 35.8 2 427.8 10 0.00 21.8 1 140.8 10 0.00 4.1 720.2 10 0.00 2.8 370.5
0.4 9 0.00 99.8 18 520.7 10 0.00 27.2 1 243.0 10 0.00 7.1 976.3 10 0.00 4.9 568.6
0.9 10 0.00 57.9 3 393.3 10 0.00 35.8 1 563.7 10 0.00 12.8 1 561.5 10 0.00 7.9 783.8

0.9 0.1 10 0.00 41.4 2 126.2 10 0.00 23.7 942.5 10 0.00 4.6 545.2 10 0.00 3.0 300.1
0.4 10 0.00 57.2 3 238.4 10 0.00 32.3 1 427.1 10 0.00 8.4 1 164.3 10 0.00 5.5 562.8
0.6 10 0.00 59.1 3 178.2 10 0.00 33.5 1 528.7 10 0.00 12.1 1 610.8 10 0.00 7.1 707.6

12 0.1 0.4 10 0.00 86.0 6 522.3 10 0.00 48.8 3 280.1 10 0.00 11.3 1 955.8 10 0.00 7.0 946.8
0.6 10 0.00 105.6 7 322.4 10 0.00 59.9 3 242.9 10 0.00 11.1 1 523.8 10 0.00 7.7 769.8
0.9 10 0.00 130.5 8 374.4 10 0.00 70.3 3 716.4 10 0.00 13.6 1 551.8 10 0.00 10.1 1 042.3

0.4 0.1 10 0.00 98.2 8 169.0 10 0.00 51.0 3 613.0 10 0.00 10.4 2 138.1 10 0.00 7.0 1 222.5
0.6 10 0.00 194.6 14 369.8 10 0.00 102.1 6 625.3 10 0.00 37.8 4 945.8 10 0.00 23.0 2 786.3
0.9 10 0.00 176.7 11 083.3 10 0.00 99.9 5 439.4 10 0.00 36.0 4 215.0 10 0.00 21.6 2 205.0

0.6 0.1 10 0.00 120.5 9 293.9 10 0.00 65.4 4 137.3 10 0.00 14.5 2 603.0 10 0.00 8.1 1 166.3
0.4 10 0.00 169.5 13 084.0 10 0.00 96.6 6 478.6 10 0.00 35.0 5 318.6 10 0.00 19.4 2 735.3
0.9 10 0.00 206.1 14 039.0 10 0.00 109.4 6 667.8 10 0.00 49.4 5 938.7 10 0.00 27.8 3 003.1

0.9 0.1 10 0.00 148.8 9 853.2 10 0.00 78.9 4 347.5 10 0.00 21.0 2 808.6 10 0.00 12.1 1 266.2
0.4 10 0.00 177.3 11 626.7 10 0.00 96.7 5 881.0 10 0.00 33.5 4 288.4 10 0.00 18.9 2 170.4
0.6 9 0.00 258.6 24 597.3 10 0.00 111.4 6 751.7 10 0.00 46.4 5 334.6 10 0.00 26.9 2 711.4

14 0.1 0.4 9 0.00 362.9 30 388.0 10 0.00 188.2 14 498.9 10 0.00 35.1 5 687.8 10 0.00 22.1 3 263.6
0.6 10 0.00 445.0 33 400.6 10 0.00 230.4 16 568.3 10 0.00 46.8 7 168.1 10 0.00 23.8 3 236.5
0.9 9 0.40 420.9 27 246.6 10 0.00 215.2 12 588.9 10 0.00 45.3 4 864.8 10 0.00 29.2 2 746.2

0.4 0.1 8 0.49 478.5 37 337.6 10 0.00 233.9 17 723.4 10 0.00 58.2 10 053.6 10 0.00 28.1 4 597.2
0.6 1 4.85 574.6 37 600.6 10 0.00 350.0 24 600.9 10 0.00 180.8 19 339.3 10 0.00 98.0 10 378.5
0.9 1 6.86 594.4 35 976.6 10 0.00 395.0 24 594.2 10 0.00 217.5 18 671.0 10 0.00 111.4 9 342.6

0.6 0.1 8 0.63 425.6 30 829.4 10 0.00 235.4 16 307.2 10 0.00 52.7 7 601.7 10 0.00 29.0 3 664.9
0.4 2 5.95 598.5 39 127.7 10 0.00 353.0 25 993.2 10 0.00 152.0 16 275.0 10 0.00 75.2 7 830.8
0.9 1 9.92 596.3 33 486.5 10 0.00 442.1 28 049.6 10 0.00 252.1 21 144.3 10 0.00 130.3 9 842.1

0.9 0.1 8 0.51 530.5 35 931.5 10 0.00 254.7 15 866.8 10 0.00 62.8 6 718.1 10 0.00 33.2 3 399.7
0.4 1 7.86 598.8 36 665.6 10 0.00 398.0 26 503.8 10 0.00 200.2 18 398.8 10 0.00 115.6 11 125.2
0.6 1 11.35 597.1 32 256.1 10 0.00 426.7 25 344.6 10 0.00 236.0 17 489.5 10 0.00 122.0 9 803.4

16 0.1 0.4 0 15.88 601.0 33 644.3 1 9.23 592.4 38 779.1 10 0.00 262.8 35 403.1 10 0.00 122.7 17 711.9
0.6 0 19.67 600.9 31 410.4 2 8.27 573.8 32 368.4 10 0.00 141.1 16 431.6 10 0.00 88.5 9 795.2
0.9 0 23.84 600.8 26 570.6 2 11.29 575.4 27 781.8 10 0.00 165.7 12 670.4 10 0.00 93.0 6 962.4

0.4 0.1 1 13.86 575.5 34 141.5 1 7.31 557.7 36 824.9 9 0.58 247.0 31 551.6 10 0.00 140.8 17 516.1
0.6 0 29.13 600.8 26 345.5 0 18.02 600.8 29 144.8 1 6.30 579.9 39 058.6 9 0.32 471.0 33 429.2
0.9 0 31.66 600.6 22 139.2 0 21.77 600.6 24 664.4 3 4.97 528.6 31 429.7 8 0.87 416.9 25 972.9

0.6 0.1 0 15.10 600.8 31 180.2 4 7.95 562.1 33 916.7 8 0.81 282.0 30 419.5 9 0.28 170.1 18 015.5
0.4 0 23.83 600.8 25 580.5 0 16.84 600.9 30 136.4 1 5.16 599.7 47 506.8 9 0.28 417.5 35 457.5
0.9 0 31.91 600.6 19 998.5 0 24.05 600.8 24 056.4 0 7.70 600.0 32 472.5 5 2.56 561.4 33 329.6

0.9 0.1 0 19.38 600.7 27 602.0 3 8.96 558.4 28 266.1 9 0.47 177.3 16 306.2 10 0.00 109.6 9 363.8
0.4 0 27.95 600.6 21 412.2 0 21.98 600.7 24 294.1 1 6.59 592.3 35 953.7 8 0.78 484.6 32 075.5
0.6 0 30.05 600.5 21 792.6 0 21.64 600.6 25 592.2 0 9.43 600.0 30 829.3 4 3.29 585.3 32 882.9

Aggregate 417 5.52 267.5 15 653.7 493 2.96 202.3 11 376.3 542 0.70 112.3 9 498.2 582 0.14 78.9 6 346.6
low community strength), meaning in the latter case that the heuristic
objective value was better than the one found by the exact method
(only possible when the exact method was unable to find the optimal
solution within the time limit). As visible from Table 4, spectral
outperformed the other heuristics in some cases, e.g., for assortative
instances, but led to large error gaps on disassortative instances. On
average, spectral achieved the largest gaps among the considered
7

methods for both data groups. This is likely because, unlike the other
heuristics, the spectral algorithm does not directly optimize the
MLE objective (Eq. (2)).

On several runs, we observed that the heuristics effectively found
the optimal solutions (or high-quality solutions). This insight directly
derives from our ability to find optimal solutions with the proposed
exact algorithms, as the heuristics by themselves cannot give such a
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Table 3
General performance of the exact methods (MILP vs. MINLP) for data group S2, with SBC and without them (NoSBC).
𝐾 𝑛 Comm. MINLP MILP

strength NoSBC SBC NoSBC SBC

Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes Opt Gap Time Nodes

2 8 Low 10 0.00 12.9 551.1 10 0.00 8.3 259.9 10 0.00 3.4 250.1 10 0.00 1.9 122.7
Medium 10 0.00 12.8 726.3 10 0.00 8.6 309.3 10 0.00 3.3 268.8 10 0.00 1.9 131.8
High 10 0.00 10.1 432.4 10 0.00 6.4 204.2 10 0.00 2.2 142.7 10 0.00 1.4 72.1

10 Low 10 0.00 42.5 2 543.1 10 0.00 26.1 1 147.1 10 0.00 5.9 835.6 10 0.00 3.9 428.7
Medium 10 0.00 41.5 2 717.2 10 0.00 25.1 1 205.4 10 0.00 6.0 878.3 10 0.00 4.1 454.4
High 10 0.00 39.4 2 260.7 10 0.00 24.7 985.2 10 0.00 4.3 529.6 10 0.00 2.7 270.7

12 Low 10 0.00 163.0 11 381.0 10 0.00 91.9 5 779.5 10 0.00 49.9 5 554.3 10 0.00 20.1 2 414.6
Medium 10 0.00 149.8 10 292.3 10 0.00 81.5 4 846.0 10 0.00 28.8 3 401.1 10 0.00 11.9 1 395.9
High 10 0.00 144.9 7 602.1 10 0.00 73.1 3 672.0 10 0.00 15.2 1 924.3 10 0.00 6.9 817.4

14 Low 4 3.92 575.2 38 428.5 10 0.00 346.0 24 528.2 10 0.00 153.3 12 810.8 10 0.00 82.8 6 691.3
Medium 4 4.66 511.1 32 873.6 10 0.00 301.8 21 439.0 10 0.00 162.3 12 307.9 10 0.00 88.1 7 492.4
High 10 0.00 457.3 30 102.3 10 0.00 246.4 15 366.9 10 0.00 84.6 6 258.7 10 0.00 38.3 3 014.3

16 Low 0 24.59 600.8 26 048.4 0 18.47 600.9 30 157.5 2 6.37 579.9 27 377.8 6 1.63 474.1 25 546.0
Medium 0 23.94 600.8 25 228.8 0 16.80 600.8 28 751.8 3 5.57 544.9 17 520.7 5 2.24 437.8 15 999.2
High 0 21.02 600.7 27 075.7 1 9.41 598.9 33 362.2 7 2.24 376.9 12 027.5 10 0.00 252.3 9 534.4

3 8 Low 6 9.86 486.0 8 260.7 10 0.00 65.8 1 887.0 10 0.00 31.1 2 505.8 10 0.00 9.3 520.3
Medium 8 2.89 436.3 10 404.9 10 0.00 51.0 1 668.7 10 0.00 39.3 2 866.0 10 0.00 8.0 410.2
High 6 10.93 404.7 6 771.4 10 0.00 52.3 1 788.2 10 0.00 22.8 1 827.0 10 0.00 6.0 372.6

10 Low 0 33.24 600.9 23 751.9 9 0.00 361.3 20 935.7 10 0.00 225.5 22 935.7 10 0.00 37.1 4 417.9
Medium 3 18.32 532.7 25 077.7 9 0.00 284.0 18 346.7 10 0.00 106.6 11 739.5 10 0.00 23.1 3 193.6
High 3 15.26 490.3 28 013.6 10 0.00 207.3 12 059.5 10 0.00 67.3 6 818.6 10 0.00 12.7 1 653.1

12 Low 0 60.62 601.0 16 741.0 0 39.07 600.7 18 220.6 0 10.17 600.0 32 058.7 10 0.00 348.6 27 153.8
Medium 0 58.57 601.0 15 707.1 0 33.35 600.6 17 730.2 2 8.06 538.6 27 221.1 9 0.36 299.5 20 088.8
High 0 59.16 601.1 17 991.1 0 31.70 600.6 20 065.9 6 2.15 474.5 28 412.3 10 0.00 115.5 9 244.4

14 Low 0 74.51 600.5 7 937.1 0 69.01 600.2 8 061.0 0 19.77 600.0 13 066.7 0 13.02 600.0 16 901.7
Medium 0 64.45 600.5 7 016.3 0 68.67 600.2 7 958.9 0 18.89 600.0 12 710.3 0 12.62 600.0 15 150.3
High 0 57.07 600.7 9 456.2 0 64.72 600.3 9 602.9 0 11.25 600.0 17 031.9 7 2.36 492.6 23 093.9

16 Low 0 100.00 599.8 1 770.4 0 92.69 599.7 3 017.5 0 29.09 600.0 4 430.8 0 24.13 600.0 6 488.1
Medium 0 100.00 600.0 2 407.4 0 92.67 599.6 2 509.6 0 27.60 600.0 4 882.4 0 22.48 600.0 6 196.3
High 0 99.26 600.0 2 587.7 0 93.27 599.9 4 183.8 0 25.58 600.0 7 191.3 0 19.77 600.0 7 161.1

Aggregate 134 28.08 410.6 13 405.3 179 20.99 315.5 10 668.3 200 5.6 257.6 9 926.2 237 3.29 192.7 7 214.4
Fig. 2. Speed ratios between the solution time of the MINLP and MILP approaches (without SBC on the left, and with SBC on the right).
l
performance certificate. It also remains an open question whether this
behavior holds for larger instance, but such an analysis would require
significant methodological advances to solve larger cases to proven
optimality.

5.4. Comparison to the ground truth

We finally compare the model parameters found by the exact meth-
ods with the ground truth parameters used in the generation of each
instance. In this analysis, we calculate the agreement 𝐴(�̂�,𝐙∗) between
he community assignments �̂� of the optimal solution of maximum
8

ikelihood and the ground truth communities 𝐙∗ of the model. The
agreement function 𝐴(⋅, ⋅) measures the maximum number of common
elements between two vectors of community assignments, considering
all possible permutations of the community labels. When the optimum
is not known, the estimated communities of the BKS are considered
instead.

Fig. 3 shows that the agreement between the recovered communities
and the ground truth communities of data set S1 is higher when 𝑛 is
larger and when the absolute difference |𝜔in − 𝜔out| is larger. This is
expected since there is more information in the graph. Similarly for
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Table 4
(Average) Relative percentage gap and solution times of the heuristic methods for S1.
𝑛 𝜔in 𝜔out E-LS1 E-LS2 E-exact spectral

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

8 0.1 0.4 3.13 1.6 × 10−4 1.65 2.5 × 10−4 1.76 3.9 × 10−1 8.20 5.9 × 10−5

0.6 4.29 1.3 × 10−4 2.08 2.0 × 10−4 3.09 4.8 × 10−1 8.45 5.9 × 10−5

0.9 7.18 1.4 × 10−4 3.44 2.4 × 10−4 4.33 4.3 × 10−1 17.07 6.0 × 10−5

0.4 0.1 3.94 1.2 × 10−4 2.51 1.9 × 10−4 3.29 4.0 × 10−1 5.83 5.7 × 10−5

0.6 1.97 1.5 × 10−4 1.27 2.1 × 10−4 1.65 5.4 × 10−1 3.40 5.6 × 10−5

0.9 3.35 1.6 × 10−4 1.75 2.5 × 10−4 2.89 5.4 × 10−1 6.53 6.1 × 10−5

0.6 0.1 3.56 1.2 × 10−4 2.26 1.9 × 10−4 2.70 4.9 × 10−1 3.77 6.0 × 10−5

0.4 2.10 1.4 × 10−4 1.39 2.1 × 10−4 1.83 6.1 × 10−1 3.59 5.7 × 10−5

0.9 2.87 1.4 × 10−4 1.90 2.4 × 10−4 2.12 6.3 × 10−1 5.74 5.7 × 10−5

0.9 0.1 6.13 1.3 × 10−4 3.68 2.2 × 10−4 4.46 4.6 × 10−1 4.41 6.5 × 10−5

0.4 1.96 1.4 × 10−4 1.42 2.2 × 10−4 1.56 6.0 × 10−1 2.76 5.7 × 10−5

0.6 2.00 1.4 × 10−4 1.39 2.2 × 10−4 1.67 6.2 × 10−1 2.71 5.7 × 10−5

10 0.1 0.4 2.26 4.6 × 10−4 1.41 3.7 × 10−4 1.45 7.3 × 10−1 4.96 1.7 × 10−4

0.6 3.57 2.5 × 10−4 1.76 3.9 × 10−4 2.44 7.1 × 10−1 8.42 6.9 × 10−5

0.9 6.06 2.4 × 10−4 4.13 3.9 × 10−4 3.98 6.7 × 10−1 13.07 7.2 × 10−5

0.4 0.1 2.62 2.3 × 10−4 2.15 3.4 × 10−4 2.11 6.7 × 10−1 3.23 6.4 × 10−5

0.6 1.37 2.7 × 10−4 1.26 3.8 × 10−4 0.81 8.5 × 10−1 3.42 7.3 × 10−5

0.9 2.22 3.0 × 10−4 1.36 4.2 × 10−4 1.61 8.9 × 10−1 5.58 6.9 × 10−5

0.6 0.1 3.28 2.6 × 10−4 2.41 3.8 × 10−4 2.29 7.1 × 10−1 1.47 6.5 × 10−5

0.4 1.93 2.9 × 10−4 1.50 4.0 × 10−4 1.32 9.1 × 10−1 3.33 6.8 × 10−5

0.9 1.78 2.8 × 10−4 1.43 4.0 × 10−4 1.23 9.2 × 10−1 2.63 6.8 × 10−5

0.9 0.1 4.17 2.6 × 10−4 3.68 3.9 × 10−4 3.72 8.1 × 10−1 0.52 6.8 × 10−5

0.4 2.32 3.3 × 10−4 1.67 4.5 × 10−4 1.69 8.6 × 10−1 4.20 6.7 × 10−5

0.6 2.24 2.9 × 10−4 1.83 3.9 × 10−4 1.57 9.5 × 10−1 3.58 6.7 × 10−5

12 0.1 0.4 2.39 5.4 × 10−4 1.79 6.9 × 10−4 1.30 9.5 × 10−1 6.71 7.8 × 10−5

0.6 4.82 4.5 × 10−4 2.99 7.7 × 10−4 3.06 9.6 × 10−1 10.81 7.8 × 10−5

0.9 5.54 4.6 × 10−4 3.81 7.3 × 10−4 3.63 1.0 13.64 7.9 × 10−5

0.4 0.1 2.30 4.0 × 10−4 2.16 6.6 × 10−4 1.69 1.1 2.23 8.4 × 10−5

0.6 1.47 5.2 × 10−4 1.14 7.2 × 10−4 0.80 1.4 2.77 8.6 × 10−5

0.9 1.95 5.0 × 10−4 1.95 7.0 × 10−4 1.83 1.2 4.97 9.4 × 10−5

0.6 0.1 2.40 4.5 × 10−4 2.08 7.4 × 10−4 1.94 1.1 2.88 8.0 × 10−5

0.4 1.58 4.2 × 10−4 1.30 6.0 × 10−4 1.22 1.2 2.10 7.9 × 10−5

0.9 1.75 6.0 × 10−4 1.57 7.7 × 10−4 1.25 1.3 3.87 8.7 × 10−5

0.9 0.1 3.07 5.2 × 10−4 2.68 7.3 × 10−4 2.45 1.1 2.97 7.8 × 10−5

0.4 1.90 5.6 × 10−4 1.62 8.2 × 10−4 1.28 1.2 2.70 7.9 × 10−5

0.6 1.35 5.5 × 10−4 1.19 7.3 × 10−4 0.88 1.3 2.77 1.2 × 10−4

14 0.1 0.4 2.59 7.2 × 10−4 2.33 1.1 × 10−3 1.49 1.4 6.89 1.3 × 10−4

0.6 3.50 7.9 × 10−4 2.76 1.2 × 10−3 1.95 1.4 7.26 1.0 × 10−4

0.9 5.61 8.4 × 10−4 4.38 1.1 × 10−3 3.85 1.6 14.04 1.0 × 10−4

0.4 0.1 2.06 7.1 × 10−4 1.81 10.0 × 10−4 1.25 1.6 2.07 9.2 × 10−5

0.6 1.21 7.4 × 10−4 1.15 9.7 × 10−4 0.69 1.7 2.90 1.0 × 10−4

0.9 1.64 7.6 × 10−4 1.43 1.1 × 10−3 0.98 2.0 3.34 1.0 × 10−4

0.6 0.1 3.76 6.5 × 10−4 3.86 1.1 × 10−3 2.73 5.0 2.37 8.9 × 10−5

0.4 1.23 7.8 × 10−4 1.06 1.1 × 10−3 0.75 6.2 2.53 9.4 × 10−5

0.9 1.39 8.6 × 10−4 1.23 1.2 × 10−3 0.94 4.1 3.10 9.2 × 10−5

0.9 0.1 4.23 7.9 × 10−4 3.73 1.2 × 10−3 3.12 1.6 1.71 9.4 × 10−5

0.4 1.48 8.2 × 10−4 1.28 1.1 × 10−3 0.98 1.8 2.78 9.3 × 10−5

0.6 1.61 8.4 × 10−4 1.56 1.2 × 10−3 1.24 1.9 3.27 9.2 × 10−5

16 0.1 0.4 1.77 1.3 × 10−3 1.54 1.7 × 10−3 0.98 2.1 3.92 1.0 × 10−4

0.6 3.50 1.1 × 10−3 3.09 1.7 × 10−3 2.42 2.1 8.74 1.0 × 10−4

0.9 5.18 1.1 × 10−3 4.16 1.8 × 10−3 4.09 2.1 13.12 1.1 × 10−4

0.4 0.1 1.70 9.9 × 10−4 1.59 1.5 × 10−3 1.15 7.6 2.71 1.5 × 10−4

0.6 1.15 1.1 × 10−3 1.07 1.7 × 10−3 0.45 8.4 2.32 1.3 × 10−4

0.9 1.88 1.4 × 10−3 1.83 1.9 × 10−3 1.28 8.2 4.66 1.5 × 10−4

0.6 0.1 2.52 1.1 × 10−3 2.59 1.7 × 10−3 2.04 5.7 2.64 1.5 × 10−4

0.4 1.03 1.2 × 10−3 1.03 1.6 × 10−3 0.52 2.7 1.93 1.0 × 10−4

0.9 1.16 1.2 × 10−3 1.14 1.6 × 10−3 0.71 2.8 2.85 1.1 × 10−4

0.9 0.1 3.78 1.1 × 10−3 4.03 1.7 × 10−3 3.80 2.2 2.05 1.0 × 10−4

0.4 1.20 1.2 × 10−3 1.15 1.7 × 10−3 0.85 2.6 2.08 1.2 × 10−4

0.6 0.94 1.2 × 10−3 0.99 1.7 × 10−3 0.59 3.0 2.24 1.1 × 10−4

Average 2.71 5.7 × 10−4 2.07 8.3 × 10−4 1.92 1.8 4.77 8.8 × 10−5
S2, we observe that instances with higher community strength have a
higher community agreement (Fig. 4).

The solution of maximum likelihood may be far from the ground
truth, in general. This is especially true for small networks, such
as those considered in this work, since there is often not enough
information to correctly recover the underlying communities.

We also compare the heuristics in their ability to recover the ground
truth communities in Tables 6 and 7, respectively for S1 and S2.
9

These tables report the average agreement (out of 50 trials) between
the recovered communities and the ground truth communities used in
the generation of each instance. We compare the performance of the
heuristics with the MILP with SBC.

For some instances, the resulting community agreement is low for
both exact and heuristic methods, since there is not enough informa-
tion present in the graph and it may be theoretically impossible to

recover the ground truth. Still, in the other cases, the exact approach
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Table 5
(Average) Relative percentage gap and solution times of the heuristic methods for S2.
𝐾 𝑛 Community E-LS1 E-LS2 E-exact spectral

strength Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

2 8 Low 2.54 1.3 × 10−4 1.69 1.8 × 10−4 2.00 1.6 5.82 5.9 × 10−5

Medium 3.14 1.5 × 10−4 2.49 1.9 × 10−4 2.32 1.3 2.95 6.0 × 10−5

High 5.81 1.5 × 10−4 4.33 1.8 × 10−4 5.82 1.5 5.45 5.9 × 10−5

10 Low 2.45 2.6 × 10−4 1.62 3.7 × 10−4 1.81 5.0 4.95 7.3 × 10−5

Medium 2.40 2.5 × 10−4 1.94 3.5 × 10−4 1.85 4.8 1.86 6.7 × 10−5

High 4.85 5.2 × 10−4 3.63 4.1 × 10−4 3.93 4.8 1.48 1.8 × 10−4

12 Low 1.47 4.5 × 10−4 1.29 6.1 × 10−4 0.91 3.7 2.26 7.9 × 10−5

Medium 3.09 4.5 × 10−4 2.94 6.4 × 10−4 2.33 3.4 3.19 7.9 × 10−5

High 4.12 4.4 × 10−4 3.56 6.6 × 10−4 3.80 3.3 2.40 7.7 × 10−5

14 Low 2.18 7.9 × 10−4 1.85 1.1 × 10−3 2.65 2.2 × 101 1.99 9.2 × 10−5

Medium 2.21 8.1 × 10−4 1.88 9.8 × 10−4 2.00 1.3 × 101 2.76 1.1 × 10−4

High 5.16 1.1 × 10−3 4.33 1.2 × 10−3 4.64 2.2 × 101 1.09 1.1 × 10−4

16 Low 1.61 1.1 × 10−3 1.58 1.5 × 10−3 1.11 2.7 2.91 1.1 × 10−4

Medium 2.27 1.2 × 10−3 2.03 1.7 × 10−3 1.60 2.4 2.79 1.1 × 10−4

High 4.51 1.1 × 10−3 3.51 1.7 × 10−3 3.45 2.7 0.79 1.0 × 10−4

3 8 Low 5.35 4.8 × 10−4 1.15 9.7 × 10−4 4.55 1.3 7.61 6.4 × 10−5

Medium 5.90 4.4 × 10−4 1.64 9.2 × 10−4 5.52 1.2 6.79 6.8 × 10−5

High 5.95 4.4 × 10−4 1.90 8.2 × 10−4 5.75 1.1 4.64 7.0 × 10−5

10 Low 3.81 8.0 × 10−4 1.94 1.7 × 10−3 3.50 4.8 4.49 7.5 × 10−5

Medium 4.90 7.6 × 10−4 2.01 1.8 × 10−3 4.28 4.2 6.88 7.5 × 10−5

High 4.87 7.1 × 10−4 2.35 1.6 × 10−3 3.90 4.2 5.66 7.4 × 10−5

12 Low 3.25 1.7 × 10−3 2.10 2.9 × 10−3 2.68 7.6 5.12 9.6 × 10−5

Medium 3.98 1.8 × 10−3 2.21 3.5 × 10−3 9.01 1.8 × 101 3.40 1.2 × 10−4

High 4.55 1.8 × 10−3 2.43 3.3 × 10−3 4.15 6.1 2.73 8.7 × 10−5

14 Low 2.59 3.2 × 10−3 1.69 4.3 × 10−3 2.03 6.2 4.93 1.0 × 10−4

Medium 2.67 2.9 × 10−3 1.46 4.8 × 10−3 2.38 6.0 3.37 1.1 × 10−4

High 4.17 2.9 × 10−3 1.96 4.8 × 10−3 3.40 4.5 3.10 1.0 × 10−4

16 Low 0.84 5.2 × 10−3 −0.05 7.2 × 10−3 0.43 1.2 × 101 2.44 1.2 × 10−4

Medium 1.36 5.5 × 10−3 0.49 7.6 × 10−3 1.19 1.1 × 101 1.41 1.2 × 10−4

High 3.32 5.1 × 10−3 1.85 7.8 × 10−3 2.34 9.7 1.86 1.2 × 10−4

Average 3.51 1.4 × 10−3 2.12 2.2 × 10−3 3.17 6.4 3.57 9.2 × 10−5
Fig. 3. (Average) agreement between the community assignments of maximum likelihood and the ground truth, as a function of 𝑛 and (𝜔in , 𝜔out), for data sets in group S1.
Fig. 4. (Average) agreement between the community assignments of maximum likelihood and the ground truth, as a function of 𝑛, 𝐾 and the level of community strength, for
data sets in group S2.
10
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Table 6
Comparison between heuristic and exact solution algorithms in recovering the ground
truth communities of data sets in group S1.
𝑛 𝜔in 𝜔out Average agreement

E-LS1 E-LS2 E-exact spectral MILP

8 0.1 0.4 0.69 0.73 0.71 0.60 0.72
0.6 0.72 0.75 0.74 0.57 0.8
0.9 0.76 0.85 0.82 0.56 0.94

0.4 0.1 0.65 0.67 0.64 0.66 0.66
0.6 0.66 0.66 0.69 0.57 0.64
0.9 0.73 0.75 0.75 0.61 0.78

0.6 0.1 0.68 0.70 0.68 0.70 0.82
0.4 0.66 0.67 0.65 0.68 0.68
0.9 0.63 0.64 0.62 0.61 0.65

0.9 0.1 0.72 0.78 0.75 0.81 0.85
0.4 0.66 0.67 0.68 0.71 0.70
0.6 0.63 0.64 0.63 0.67 0.64

10 0.1 0.4 0.67 0.71 0.72 0.58 0.74
0.6 0.74 0.78 0.77 0.60 0.87
0.9 0.78 0.81 0.85 0.56 0.99

0.4 0.1 0.68 0.69 0.71 0.71 0.8
0.6 0.66 0.65 0.65 0.61 0.65
0.9 0.68 0.68 0.73 0.59 0.72

0.6 0.1 0.72 0.75 0.75 0.86 0.86
0.4 0.62 0.63 0.62 0.60 0.60
0.9 0.63 0.64 0.63 0.61 0.67

0.9 0.1 0.79 0.79 0.80 0.93 0.99
0.4 0.66 0.66 0.66 0.7 0.66
0.6 0.65 0.65 0.65 0.69 0.71

12 0.1 0.4 0.67 0.69 0.70 0.58 0.72
0.6 0.75 0.80 0.81 0.55 0.89
0.9 0.76 0.81 0.82 0.57 0.99

0.4 0.1 0.67 0.68 0.70 0.71 0.75
0.6 0.63 0.62 0.65 0.57 0.64
0.9 0.72 0.70 0.71 0.57 0.86

0.6 0.1 0.71 0.71 0.74 0.75 0.85
0.4 0.66 0.68 0.67 0.7 0.7
0.9 0.64 0.63 0.66 0.56 0.67

0.9 0.1 0.75 0.77 0.78 0.82 0.92
0.4 0.67 0.66 0.71 0.66 0.71
0.6 0.64 0.65 0.63 0.69 0.66

14 0.1 0.4 0.69 0.69 0.73 0.56 0.8
0.6 0.70 0.73 0.76 0.55 0.86
0.9 0.78 0.81 0.84 0.55 0.99

0.4 0.1 0.67 0.69 0.67 0.68 0.76
0.6 0.63 0.62 0.64 0.59 0.66
0.9 0.65 0.65 0.67 0.56 0.71

0.6 0.1 0.74 0.72 0.74 0.85 0.9
0.4 0.63 0.62 0.65 0.60 0.69
0.9 0.61 0.62 0.61 0.58 0.66

0.9 0.1 0.75 0.77 0.79 0.87 0.96
0.4 0.66 0.66 0.67 0.66 0.76
0.6 0.63 0.63 0.62 0.64 0.66

16 0.1 0.4 0.65 0.66 0.71 0.56 0.73
0.6 0.77 0.78 0.81 0.53 0.97
0.9 0.80 0.82 0.84 0.53 1.0

0.4 0.1 0.68 0.68 0.70 0.67 0.81
0.6 0.62 0.62 0.63 0.54 0.66
0.9 0.70 0.69 0.75 0.58 0.82

0.6 0.1 0.75 0.74 0.77 0.80 0.92
0.4 0.61 0.62 0.61 0.64 0.62
0.9 0.65 0.64 0.65 0.57 0.66

0.9 0.1 0.79 0.79 0.79 0.87 0.98
0.4 0.69 0.70 0.77 0.72 0.82
0.6 0.61 0.61 0.61 0.63 0.61

Average 0.69 0.70 0.71 0.65 0.77

outperforms the heuristics and the spectral method for most instances,
highlighting the importance of good solutions for this task.

6. Conclusions

This study allowed us to fill a significant methodological gap: the
lack of exact solution methods for community detection in the general
11
Table 7
Comparison between heuristic and exact solution algorithms in recovering the ground
truth communities of data sets in group S2.
𝐾 𝑛 Community Average agreement

strength E-LS1 E-LS2 E-exact spectral MILP

2 8 Low 0.64 0.65 0.63 0.67 0.68
Medium 0.67 0.67 0.67 0.8 0.74
High 0.75 0.77 0.74 0.78 0.9

10 Low 0.63 0.62 0.60 0.65 0.60
Medium 0.68 0.68 0.64 0.73 0.70
High 0.75 0.77 0.78 0.89 0.89

12 Low 0.65 0.65 0.67 0.63 0.72
Medium 0.70 0.72 0.71 0.73 0.84
High 0.80 0.82 0.82 0.85 0.92

14 Low 0.68 0.69 0.67 0.71 0.74
Medium 0.70 0.71 0.70 0.76 0.86
High 0.76 0.79 0.79 0.94 0.98

16 Low 0.66 0.67 0.69 0.65 0.72
Medium 0.76 0.76 0.80 0.77 0.89
High 0.77 0.82 0.82 0.93 0.99

3 8 Low 0.58 0.59 0.57 0.6 0.56
Medium 0.57 0.60 0.56 0.64 0.60
High 0.63 0.69 0.65 0.76 0.71

10 Low 0.56 0.56 0.57 0.64 0.61
Medium 0.60 0.60 0.61 0.62 0.62
High 0.61 0.66 0.61 0.69 0.76

12 Low 0.56 0.56 0.54 0.59 0.54
Medium 0.62 0.62 0.57 0.65 0.65
High 0.66 0.72 0.67 0.79 0.86

14 Low 0.54 0.54 0.54 0.54 0.56
Medium 0.60 0.63 0.61 0.66 0.7
High 0.68 0.73 0.70 0.78 0.84

16 Low 0.53 0.54 0.54 0.59 0.56
Medium 0.61 0.62 0.63 0.69 0.66
High 0.66 0.69 0.69 0.75 0.78

Average 0.65 0.67 0.66 0.72 0.74

SBM. Exact algorithms are indeed essential for a disciplined analysis
of machine learning models and training algorithms, as they permit
a precise evaluation of heuristic performance. The goal of a heuristic
is to achieve an optimality gap that is systematically close to 0% for
the model at hand. As heuristics do not provide guarantees regarding
solution quality, we cannot evaluate their true optimality gap unless we
have access to an efficient algorithm that produces optimal solutions (or
at least good bounds on solution value).

To that end, we have introduced new mathematical programming
formulations for the MLE model of the DCSBM. We introduced a
descriptive formulation based on a MINLP and employed lineariza-
tion techniques to transform it into a MILP. We also proposed bound
tightening and symmetry-breaking strategies, which lead to critical
improvements to the model. The proposed solution methods can find
optimal solutions of maximum likelihood with a certificate of global
optimality. Furthermore, we have reviewed three natural variants of
the EM algorithm for this problem, and conducted extensive numerical
experiments to analyze their performance.

This work raises several interesting avenues for future research.
In particular, there is still space to improve the scalability of the
exact methods. In our computational experiments, we noted that the
MILP often identifies the optimal solution early in the optimization
process but that it takes a much longer time to find good lower bounds
and prove optimality. To improve this behavior, research could be
pursued on new problem formulations and valid inequalities permitting
to achieve tighter lower bounds and enhance the efficiency of the
branch-and-bound exploration. Another alternative is to explore math-
ematical decomposition techniques such as column generation, which
have the potential to lead to structurally-different formulations and
solution approaches. Finally, we generally encourage the pursuit of a
disciplined analysis of algorithms for other learning tasks, and likewise
develop mathematical programming approaches for other models of
importance.
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