Samin Aref et Mahdi Mostajabdaveh
Article de revue (2024)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm. Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023).
Mots clés
network science; modularity maximization; integer programming; approximation; graph neural network; graph optimization
Sujet(s): | 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
---|---|
Département: | Département de mathématiques et de génie industriel |
URL de PolyPublie: | https://publications.polymtl.ca/58198/ |
Titre de la revue: | Journal of computational science (vol. 78) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.jocs.2024.102283 |
URL officielle: | https://doi.org/10.1016/j.jocs.2024.102283 |
Date du dépôt: | 24 mai 2024 08:50 |
Dernière modification: | 30 sept. 2024 18:36 |
Citer en APA 7: | Aref, S., & Mostajabdaveh, M. (2024). Analyzing modularity maximization in approximation, heuristic and graph neural network algorithms for community detection. Journal of computational science, 78, 102283 (14 pages). https://doi.org/10.1016/j.jocs.2024.102283 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions