<  Retour au portail Polytechnique Montréal

Analyzing modularity maximization in approximation, heuristic and graph neural network algorithms for community detection

Samin Aref et Mahdi Mostajabdaveh

Article de revue (2024)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Community detection, which involves partitioning nodes within a network, has widespread applications across computational sciences. Modularity-based algorithms identify communities by attempting to maximize the modularity function across network node partitions. Our study assesses the performance of various modularity-based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network algorithm, and nine variations of the Bayan approximation algorithm. Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on 68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on networks with modular structures. If modularity is to be used for detecting communities, we recommend approximate optimization algorithms for a methodologically sound usage of modularity within its applicability limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023).

Mots clés

network science; modularity maximization; integer programming; approximation; graph neural network; graph optimization

Sujet(s): 2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/58198/
Titre de la revue: Journal of computational science (vol. 78)
Maison d'édition: Elsevier
DOI: 10.1016/j.jocs.2024.102283
URL officielle: https://doi.org/10.1016/j.jocs.2024.102283
Date du dépôt: 24 mai 2024 08:50
Dernière modification: 30 sept. 2024 18:36
Citer en APA 7: Aref, S., & Mostajabdaveh, M. (2024). Analyzing modularity maximization in approximation, heuristic and graph neural network algorithms for community detection. Journal of computational science, 78, 102283 (14 pages). https://doi.org/10.1016/j.jocs.2024.102283

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document