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A B S T R A C T

Community detection, which involves partitioning nodes within a network, has widespread applications across
computational sciences. Modularity-based algorithms identify communities by attempting to maximize the
modularity function across network node partitions. Our study assesses the performance of various modularity-
based algorithms in obtaining optimal partitions. Our analysis utilizes 104 networks, including both real-world
instances from diverse contexts and modular graphs from two families of synthetic benchmarks. We analyze ten
inexact modularity-based algorithms against the exact integer programming baseline that globally optimizes
modularity. Our comparative analysis includes eight heuristics, two variants of a graph neural network
algorithm, and nine variations of the Bayan approximation algorithm.

Our findings reveal that the average modularity-based heuristic yields optimal partitions in only 43.9% of
the 104 networks analyzed. Graph neural networks and approximate Bayan, on average, achieve optimality on
68.7% and 82.3% of the networks respectively. Additionally, our analysis of three partition similarity metrics
exposes substantial dissimilarities between high-modularity sub-optimal partitions and any optimal partition
of the networks. We observe that near-optimal partitions are often disproportionately dissimilar to any optimal
partition. Taken together, our analysis points to a crucial limitation of the commonly used modularity-based
methods: they rarely produce an optimal partition or a partition resembling an optimal partition even on
networks with modular structures. If modularity is to be used for detecting communities, we recommend
approximate optimization algorithms for a methodologically sound usage of modularity within its applicability
limits. This article is an extended version of an ICCS 2023 conference paper (Aref et al., 2023).
1. Introduction

Community detection (CD), the data-driven process of inductively
partitioning nodes within a network [1], is a core problem in compu-
tational sciences, particularly, in physics, computer science, biology,
and computational social science [2]. Among common approaches for
CD are the algorithms which are designed to maximize an objective
function, modularity [3], across all possible ways that the nodes of
the input network can be partitioned into communities. Modularity
measures the fraction of edges within communities minus the expected
fraction if the edges were distributed randomly; with the random
distribution of the edges being a null model that preserves the node
degrees. Despite their name and design philosophy, current modularity
maximization algorithms, which are used by no less than tens of
thousands of peer-reviewed studies [4], are not guaranteed to maximize
modularity [5–7].

∗ Corresponding author.
E-mail address: aref@mie.utoronto.ca (S. Aref).

Modularity is among the first objective functions proposed for
optimization-based community detection [3,8]. Several limitations [8–
11] of modularity including the resolution limit [12–14] have led
researchers to develop alternative CD methods using stochastic block
modeling [15–18], information theoretic approaches [19,20], and al-
ternative objective functions [21–24]. Modularity-based heuristics are
the most commonly used methods for CD [2,25]. Besides modularity-
based heuristics not guaranteeing the proximity to optimality, we
do not know [6,26] the extent to which they succeed in return-
ing maximum-modularity (optimal) partitions or similar partitions.
Recently developed alternatives to these heuristics are neural network-
based algorithms [27] and maximum modularity approximation algo-
rithms [28] which use different approaches for maximizing modularity.
Unlike modularity-based heuristics, approximation algorithms provide
guarantees on the proximity to optimality.

Despite the availability of many modularity-based algorithms, the
analysis of their performance in returning optimal partitions has not
vailable online 8 April 2024
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received sufficient attention [6,26]. In a previous study, Good et al.
used one algorithm and three metabolic networks to show that high-
modularity sub-optimal partitions may substantially differ with each
other [26]. Our study is a continuation of a similar research path but
it focuses on three fundamental and under-explored questions using an
expanded scope of 104 networks, ten inexact algorithms, and an exact
baseline method.

The contributions of this study are therefore three-fold. (1) It in-
vestigates the extent to which modularity maximization algorithms
return optimal partitions. (2) It quantifies the cost of sub-optimal
partitions in terms of their dissimilarity to the closest optimal partition
using three similarity metrics. (3) It evaluates the performance of
ten modularity-based algorithms on a structurally diverse set of real
and synthetic networks. Our comparative analysis reveals the differ-
ences between these algorithms. We investigate several methods from
different perspectives and our results show that some methods have
certain advantages over the others. This study aims to help practitioners
select suitable modularity-based algorithm to use given the specifics of
their use case. We do not claim or assume that maximum-modularity
partitions represent best partitions; neither do we claim that modularity
is a silver bullet for community detection. Throughout the paper, we
use the terms network and graph interchangeably. After reviewing
the ten algorithms and describing the methods and materials, we
present the results in five subsections followed by a discussion of the
methodological ramifications and future directions.

2. Reviewing ten modularity-based algorithms

We evaluate ten modularity-based algorithms known as Clauset-
Newman-Moore (CNM) [29], Louvain [30], Reichardt Bornholdt with
the configuration model as the null model (LN) [31,32], Combo [25],
Belief [33], Paris [34], Leiden [35], EdMot-Louvain [36], recurrent
graph neural network (GNN) [27], and Bayan [28]. We briefly describe
how these ten algorithms use modularity to discover communities.

CNM: The CNM algorithm initializes each node as a community by
itself. It then follows a greedy scheme of merging two communities that
contribute the maximum positive value to modularity [29].

Louvain: The Louvain algorithm involves two sets of iterative steps:
(1) locally moving nodes for increasing modularity and (2) aggregating
the communities from the first step [30]. Despite Louvain being the
most commonly used modularity-based algorithm [4], it may some-
times lead to disconnected components in the same community [35].

Leiden: The Leiden algorithm attempts to resolve a defect of the
Louvain algorithm in returning badly connected communities. It is sug-
gested to guarantee well-connected communities in which all subsets of
all communities are locally optimally assigned [35].

LN: The LN algorithm uses the same heuristic rules as the Leiden
algorithm, but it supports weighted and directed graphs [32].

Combo: The Combo algorithm is a general optimization-based CD
method which supports modularity maximization among other tasks. It
involves two sets of iterative steps: (1) finding the best merger, split,
or recombination of communities to maximize modularity and (2) per-
forming a series of Kernighan–Lin bisections [37] on the communities
as long as they increase modularity [25].

Belief: The Belief algorithm seeks the consensus of different high-
modularity partitions through a message-passing algorithm [33] mo-
tivated by the premise that maximizing modularity can lead to many
poorly correlated competing partitions.

Paris: The Paris algorithm is suggested to be a modularity maxi-
mization scheme with a sliding resolution [34]; that is, an algorithm ca-
pable of capturing the multi-scale community structure of real networks
without a resolution parameter. It generates a hierarchical community
structure based on a simple distance between communities using a
nearest-neighbor chain [34].

EdMot: The EdMot-Louvain algorithm (EdMot for short) is devel-
ped to overcome the hypergraph fragmentation issue observed in
2

previous motif-based CD methods [36]. It first creates the graph of
higher-order motifs (small dense subgraph patterns) and then partitions
it using the Louvain method to heuristically maximize modularity using
higher-order motifs [36].

GNN: The GNN algorithm uses a recurrent graph neural network
for maximizing modularity [27]. It relies on a continuous optimization
technique that considers current node’s attachment : continuous variable
representing the cluster membership of a given node in a given com-
munity. In this algorithm, the attachments of nodes are combined with
attachments of their neighbors. It starts with a random initial matrix
of all attachments which is then updated iteratively to increase the
modularity function using a recurrent graph neural network architec-
ture [27]. We have used two variations of the GNN algorithm: GNN-100
(suggested to be the fastest version) and GNN-25K (suggested to be a
slow but very precise version) [27].

Approximate Bayan: Unlike the algorithms discussed earlier, the
approximate Bayan algorithm (Bayan for short) is an approximation al-
gorithm for modularity maximization. Bayan is theoretically grounded
by an Integer Programming (IP) formulation of the modularity maxi-
mization problem [38]. For approximating an optimal solution to the
IP problem, Bayan uses a branch-and-cut scheme [28] while accounting
for the gap between the upper bound and lower bound of the optimiza-
tion problem. When the two bounds reach the desired approximation
threshold (set by the user), the Bayan algorithm returns the partition
with the highest modularity found alongside the maximum potential
modularity gap (in percentage) that the returned partition may have
from a globally maximum-modularity partition of the input graph.

Except for Bayan and GNN, we use the Python implementations of
the remaining eight algorithms (collectively referred to as heuristics)
which are accessible in the Community Discovery library (CDlib) ver-
ion 0.2.6 [39]. For Bayan, we use the bayanpy version 0.7.6 library
n Python. And we use the GNN as implemented in its public GitHub
epository referenced in [27].

. Methods and materials

In this paper, we evaluate eight modularity-based heuristics [25,29,
0,32–36], two variations of a graph neural network algorithm [27],
nd nine variations of the approximate Bayan algorithm [28]. We
uantify the extent to which these ten algorithms and their variations
ucceed in returning an optimal partition or a partition resembling an
ptimal partition.

To achieve this objective, we quantify the proximity of their re-
ults to the globally optimal partition(s), which we obtain using an
xact Integer Programming (IP) model [38,40,41]. After describing the
athematical preliminaries, the IP model is discussed in Section 3.5.

.1. Modularity matrix of a graph

Consider the simple (undirected and unweighted) graph 𝐺 = (𝑉 ,𝐸)
with |𝑉 | = 𝑛 nodes, |𝐸| = 𝑚 edges, and adjacency matrix entries 𝑎𝑖𝑗 . The
modularity matrix of graph 𝐺 is represented by 𝐁 = [𝑏𝑖𝑗 ] whose entries
are 𝑏𝑖𝑗 = 𝑎𝑖𝑗 − 𝛾𝑑𝑖𝑑𝑗∕2𝑚. In this formula, 𝑑𝑖 represents the degree of
ode 𝑖 and 𝛾 is the resolution parameter.1

.2. Modularity of a partition

For graph 𝐺 = (𝑉 ,𝐸), consider the partition 𝑋 = {𝑉1, 𝑉2,… , 𝑉𝑘}
f the node set 𝑉 into any unspecified number 𝑘 of (non-overlapping)
ommunities. The modularity function 𝑄(𝐺,𝑋), proposed by Newman [3]

1 Without loss of generality, we set 𝛾 = 1 for all the analysis in this paper.

https://pypi.org/project/cdlib/0.2.6/
https://pypi.org/project/cdlib/0.2.6/
https://pypi.org/project/cdlib/0.2.6/
https://pypi.org/project/bayanpy/0.7.6/
https://github.com/Alexander-Belyi/GNNS
https://github.com/Alexander-Belyi/GNNS
https://github.com/Alexander-Belyi/GNNS
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maps each partition of a graph to a real number in the range [−0.5, 1]
according to Eq. (1).

𝑄(𝐺,𝑋) =
1
2𝑚

∑

(𝑖,𝑗)∈𝑉 2

(

𝑎𝑖𝑗 − 𝛾
𝑑𝑖𝑑𝑗
2𝑚

)

𝛿(𝑖, 𝑗) (1)

The modularity function 𝑄(𝐺,𝑋) is based on the modularity matrix
𝐁 of graph 𝐺 and the partition 𝑋 applied on the node set of graph 𝐺.
In Eq. (1), the Kronecker delta, 𝛿(𝑖, 𝑗), is 1 if nodes 𝑖 and 𝑗 are in the
same community according to partition 𝑋, otherwise it is 0.

3.3. Modularity maximization

The modularity maximization problem for the input graph 𝐺 =
(𝑉 ,𝐸) involves finding a partition 𝑋∗

(𝐺) whose modularity is maximum
over all possible partitions: 𝑋∗

(𝐺) = argmax𝑋 𝑄(𝐺,𝑋).

3.4. Optimal and sub-optimal partitions

For graph 𝐺, we refer to any partition that satisfies the definition
of 𝑋∗

(𝐺) = argmax𝑋 𝑄(𝐺,𝑋) as an optimal partition (i.e., a maximum-
modularity partition). Any partition that in not an optimal partition is
a sub-optimal partition. Different sub-optimal partitions 𝑋1, 𝑋2 of graph
𝐺 are distinguished based on their corresponding modularity values
𝑄(𝐺,𝑋1), 𝑄(𝐺,𝑋2) as well as by their similarity to an optimal partition
of 𝐺. If 𝐺 has multiple optimal partitions, we conservatively use the
similarity to the optimal partition that is closest to the sub-optimal
partition under evaluation. We use three different metrics (described
in 3.6) for quantifying similarity to a reference partition.

3.5. Sparse IP formulation of modularity maximization

Consider the simple graph 𝐺 = (𝑉 ,𝐸) with modularity matrix
entries 𝑏𝑖𝑗 , obtained using the resolution parameter 𝛾. Consider the
binary decision variable 𝑥𝑖𝑗 for each pair of distinct nodes (𝑖, 𝑗), 𝑖 < 𝑗.
In a given partition, the community membership of the nodes 𝑖 and 𝑗
is either the same (represented by 𝑥𝑖𝑗 = 0) or different (represented by
𝑥𝑖𝑗 = 1). Accordingly, Dinh and Thai [38] have formulated the IP model
in Eq. (2) for maximizing the modularity of input graph 𝐺.

max
𝑥𝑖𝑗

𝑄 = 1
2𝑚

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝑉 2 ,𝑖<𝑗

2𝑏𝑖𝑗 (1 − 𝑥𝑖𝑗 ) +
∑

(𝑖,𝑖)∈𝑉 2

𝑏𝑖𝑖
⎞

⎟

⎟

⎠

s.t. 𝑥𝑖𝑘 + 𝑥𝑗𝑘 ≥ 𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗, 𝑘 ∈ 𝐾(𝑖, 𝑗)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

(2)

In Eq. (2), 𝑏𝑖𝑖 is the diagonal entry in row 𝑖 and column 𝑖 of
the modularity matrix 𝐁 for graph 𝐺 which does not depend on the
decision variables and is therefore separated from the off-diagonal
entries. The optimal objective function value obtained from Eq. (2)
equals the maximum modularity for the input graph 𝐺. An optimal
community assignment is characterized by the values of the 𝑥𝑖𝑗 vari-
ables in an optimal solution to the IP model in Eq. (2). 𝐾(𝑖, 𝑗) indicates
a minimum-cardinality separating set [38] for the nodes 𝑖, 𝑗.

Using 𝐾(𝑖, 𝑗) in the IP model of this problem leads to a more efficient
formulation with (𝑛2) constraints [38] instead of (𝑛3) constraints
as in earlier IP formulations of the problem [40,41]. Solving this
optimization problem is NP-hard [7,40].

To obtain the baseline of our comparative analysis, we use the
Gurobi solver (version 10.0) [42] to solve this NP-hard problem to
global optimality for the small and mid-sized instances outlined in
Section 3.8. For each network instance, we first obtain the optimal
partitions by solving the IP model in Eq. (2) using the Gurobi solver
and a termination criterion that ensures global optimality [42].

In the next step, we evaluate the ten modularity-based algorithms
based on the proximity of their partitions to an optimal partition. On
each network instance, we quantify the following for each algorithm
(or algorithm variation): (1) the ratio of their output modularity to
3

the maximum modularity for that network and (2) three measures of
similarity between their output partition and an optimal partition of
that network. These calculations lead to four values (GOP, AMI, RMI,
and ECS) which are described in 3.6.

3.6. Measures for evaluating the algorithms

For a quantitative measure of proximity to global optimality, we
define and use the Global Optimality Percentage (GOP) as the fraction of
the modularity returned by an algorithm for a network divided by the
globally maximum modularity for that network (obtained by solving
the IP model in Eq. (2)). In cases where an algorithm returns a partition
with a negative modularity value, we set GOP = 0 to facilitate easier
interpretation of proximity to optimality based on non-negative GOP
values.

We use three measures to quantify the similarity of a partition to
an optimal partition. Two of them (AMI and RMI) are grounded in
information theory and are shown to be reliable measures of partition
similarity [43]. We use adjusted mutual information [44] and normalize
it symmetrically [43]. The symmetrically normalized adjusted mutual
information (AMI for short) [44] is a measure of similarity between
two partitions of the same network. We also use reduced mutual infor-
mation [45] and normalize it asymmetrically [43]. The asymmetrically
normalized reduced mutual information (RMI for short) [45] is a
measure of similarity between two partitions of the same network.

Unlike the commonly used [13,14,23,46–48] yet problematic [43–
45,49] normalized mutual information (NMI) [44], AMI and RMI adjust
the measurement based on the similarity that the two partitions may
have by pure chance. AMI and RMI for a pair of identical partitions
(or permutations of the same partition) equal 1. For two extremely
dissimilar partitions, however, AMI and RMI take values close to 0.

To ensure the reliability of our results on similarities of partitions,
we also use the Element-Centric Similarity (ECS) as a third measure
of partition similarity [49]. ECS differs from AMI and RMI in that it
uses an alternative method for quantifying the similarity between two
partitions that is grounded in common membership of nodes induced
by the partition as opposed to overlaps between clusters [49]. We
use ECS2 because of the methodological advantages it offers compared
to most commonly used metrics including the NMI, the Jaccard in-
dex, the Fowlkes-Mallows index, the adjusted Rand index, and the
F-measure [49].

While the partition that maximizes modularity is often unique [50],
some graphs have multiple optimal partitions. We obtain all optimal
partitions of the networks using the Gurobi solver by running it with a
special configuration for finding all optimal partitions [42]. In cases of
networks with multiple optimal partitions, we calculate AMI, RMI, and
ECS for the partition of each algorithm and each of the multiple glob-
ally optimal partitions of that graph. We then conservatively report the
maximum AMI, maximum RMI, and maximum ECS of each algorithm
on that network to quantify the similarity between that partition and
its closest optimal partition. Consequently, a low value of AMI, RMI, or
ECS reported for a partition indicates its dissimilarity to any optimal
partition of that network.

3.7. Illustrative example

Fig. 1 shows a toy example of one graph partitioned by 19 different
method to demonstrate sub-optimal and optimal partitions as well as
values taken by modularity, GOP, AMI, RMI, and ECS. The graph
shown in Fig. 1 has six nodes and seven edges. In our analysis, each
network instance is partitioned by an exact method as well as ten
modularity-based algorithms and their variations (19 inexact methods).

2 For computing ECS, we use the value of 0.9 for its 𝛼 parameter as
suggested in [49] and used in the documentation of the CluSim Python library.
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Fig. 1. A toy example demonstrating several sub-optimal and one optimal partition for a graph and the corresponding modularity, GOP, AMI, RMI, and ECS values. All information
and values are related to the graph shown on top.
The first row in Fig. 1 shows the partition and values pertaining to
method 1. Method 1 produces the partition [[1,2,3,5],[4,6]] in a failed
attempt to maximize modularity for the input graph. The modularity
of this sub-optimal partition equals 𝑄1 = 0.122. The same graph is
lso partitioned by solving the exact IP model. This method returns all
ptimal partitions of the input graph. In case of this graph, there is only
ne optimal partition which is [[1,2,5],[3,4,6]]. The modularity of this
ptimal partition equals 𝑄∗ = 0.204 which is the maximum value that
he modularity function can possibly take for this input graph.

By comparing the results from method 1 and the exact method,
our measures are calculated for method 1: GOP, AMI, RMI, and ECS.
OP for the partition obtained by method 1 equals 0.122∕0.204 = 0.60
hich means the partition for method 1 is within 1-GOP= 40% of the
aximum modularity. The AMI between the optimal partition and the
artition obtained by method 1 equals 0.36. RMI and ECS are also
alculated which reflect other perspectives on the extent of similarity
etween this sub-optimal partition and the optimal partition.

Note that for any inexact method that happens to return an optimal
artition for a graph, GOP, AMI, RMI, and ECS will all take the value 1
hich is the desired value for all four measures. In a practical setting,
MI, RMI, and ECS (as defined in this paper) are only available when
n optimal partition is available which is not always the case. Like the
ifferences between partitions and values for Method 1 and Method 19
n Fig. 1, Our comparative analysis reveals the differences between the
erformance of algorithms w.r.t maximizing modularity. Method 1 has
elatively more success than Method 19 according to GOP, AMI, RMI,
nd ECS. This is consistent with the intuitions from visually inspecting
4

he partitions in Fig. 1. w
3.8. Specifications of network data and computing resources

For our computational experiments, we consider 54 real networks3

from a wide range of contexts and domains including online and
offline social relations, social affiliation, social collaboration, animal
interactions, biological, neural, informational, technological, fictional,
geographical, organizational, communications, and terrorism. We also
use 50 structurally diverse synthetic networks that have modular struc-
tures.

To create synthetic graphs with modular structures, we use two
benchmark graph generation models: Lancichinetti-Fortunato-Radicchi
(LFR) benchmark graphs [51] and Artificial Benchmarks for Commu-
nity Detection (ABCD) graphs [52]. These two families of synthetic
benchmark graphs are designed for evaluating the performance of CD
algorithms based on their success in retrieving a planted (ground-truth)
partition (see [14,28,47] for the common use case). However, we de-
ploy these two models for generating synthetic graphs with controllable
modular structures and do not use the planted partition information.
LFR and ABCD each has a distinct mixing parameter which controls the
association between the structure and the planted communities. This
association in turn impacts the strength of the modular structure (rela-
tively higher density of intra-community edges compared to the density
of inter-community edges). ABCD is the more recent alternative to the
LFR model and offers additional benefits including higher scalability
and better control for adjusting the mixing parameter [52].

3 The 54 real networks are accessible from the Netzschleuder repository
ith the details in the Appendix.

https://networks.skewed.de/
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Fig. 2. Modularity maximization for one network using six methods leading to six sub-optimal partitions (panels a–f) with increasing 𝑄, different 𝑘, and different AMI values.
Only the giant component is shown. (Magnify the high-resolution color figure on screen for more details.)
a
a
r
b
t
o
c
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The 50 synthetic networks include 20 LFR graphs and 30 ABCD
graphs with up to 1000 edges. The real networks considered have
at most 2812 edges. These instance sizes were chosen to ensure that
globally optimal partitions can be obtained in a reasonable time. Pub-
licly available links and additional details for both real and synthetic
networks are provided in the Appendix.

The computational experiments were implemented in Python 3.9
using a notebook computer with an Intel Core i7-11800H @ 2.30 GHz
CPU and 64 GB of RAM running Windows 10.

4. Results

We present the main results from our experiments in the follow-
ing five subsections. In Section 4.1, we compare partitions from 12
modularity maximization methods on a single network to illustrate the
differences between different methods (algorithms and their variations)
for solving the same underlying optimization problem. In Section 4.2,
we use AMI, RMI, and ECS to investigate the cost of sub-optimality
in terms of dissimilarity of partitions from an optimal partition. In
Section 4.3, we summarize the distributions of AMI, RMI, and ECS
for each algorithm on all 104 networks. In Section 4.4, we compare
the solve times of all the algorithms and their variations. Finally, in
Section 4.5, we investigate the success rate of all the algorithms and
their variations in returning an optimal partition.

4.1. Comparing partitions from different algorithms on one network

Figs. 2–3 show the largest connected component (the giant compo-
nent) of one network that is partitioned by twelve modularity-based CD
5

e

methods. This network4 represents an anonymized Facebook egocentric
network5 from which the ego node has been removed. Nodes represent
Facebook users, and an edge exists between any pair of users who
were friends on Facebook in April 2014 [53]. Partitions of nodes into
communities are shown using node colors.

Comparing Figs. 2–3, the partitions from the six algorithms in Fig. 2
have more substantial differences from the optimal values in 𝑄, AMI,
and 𝑘 (number of communities) as shown by the values in the corre-
sponding subcaptions in Fig. 2. Fig. 3(f) shows an optimal partition of
the network obtained using the Bayan approximate algorithm with an
approximation tolerance of 1𝑒 − 3. This optimal partition has 𝑘 = 28
communities, and a modularity value of 𝑄∗ = 0.7157714 (the maximum
modularity for this network). The partitions from the all the other
eleven methods are sub-optimal. Compared to other heuristics, the two
heuristics Combo and LN have more success in achieving proximity to
an optimal partition. LN returns a partition with 𝑘 = 28 communities
nd a modularity of 𝑄 = 0.7153755 which has the highest AMI among
ll heuristics (0.971). The relative success of the Combo algorithm is in
eturning a particularly high-modularity partition with 𝑄 = 0.7157709,
ut with 𝑘 = 13 communities and a lower AMI (0.949) compared to
he AMI of LN. The two variations of the GNN algorithm return sub-
ptimal partitions with 19 and 16 communities. Similar observations
an be made from the RMI and ECS values of these partitions which
re not reported in the interest of brevity.

4 facebook_friends network [53] from the Netzschleuder repository.
5 A network of one person’s social ties to other persons and their ties to

ach other.

https://networks.skewed.de/
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.2. The disproportionate cost of sub-optimality

We use three scatter-plots in Figs. 4–6 to investigate the cost of sub-
ptimality from the three perspectives of AMI, RMI, and ECS (in terms
f dissimilarity from an optimal partition) for each of the algorithms
ased on all the 104 networks.

Fig. 4 has one panel for each algorithm which shows GOP on the
-axis and AMI on the 𝑥-axis. Each of the 104 data points in a panel
f Fig. 4 corresponds to one of the 104 networks. The 45-degree lines
n Fig. 4 indicate the areas where the GOP and AMI are equal. In
ther words, the 45-degree lines show areas where the extent of sub-
ptimality (1-GOP) is associated with a dissimilarity (1-AMI) of the
ame proportion between the sub-optimal partition and the closest
ptimal partition.

Looking at the y-axes values in Fig. 4, we observe that there is
substantial variation in the values of GOP (i.e., variations in the

xtent of sub-optimality) for most of the eight heuristic algorithms. The
elief algorithm returns partitions associated with negative modularity
alues for 22 of the 104 instances (leading to the corresponding data
oints having GOP= 0 and being concentrated at the bottom of the
catter-plot). The Paris and EdMot algorithms return partitions with
odularity values substantially smaller than the maximum modularity

alues. Among the eight heuristics, the four algorithms with the highest
nd increasing performance in returning close-to-maximum modularity
alues are LN, Leiden, Louvain, and Combo. Despite that these instance
re graphs with no more than 2812 edges, they are, according to Fig. 4,
hallenging instances for these heuristic algorithms to optimize. Given
hat modularity maximization is an NP-hard problem [7,40], one can
rgue that the performance of these heuristics, in achieving proximity
o an optimal partition, does not improve for larger networks. The y-
6

xes values for different variations of Bayan and GNN have a much o
ower variability and are closer (than partitions of most heuristics)
o 1. This indicates that these two algorithms return partitions with
odularity values closer to the maximum modularity values of these
etworks.

The x-axes values for the heuristics in Fig. 4, except Combo, show
onsiderable dissimilarity (from an AMI perspective) between the sub-
ptimal partitions of these heuristics and any optimal partition for these
04 instances. Some sub-optimal partitions obtained by these heuristics
ave AMI values smaller than 0.5. These are substantially different from
ny optimal partition. Even for the data points concentrated at the top
f the scatter-plots which have 0.95 < GOP < 1, we see some sub-
tantially small AMI values. They indicate that some high-modularity
artitions are particularly dissimilar to any optimal partition. Com-
ared to the other seven heuristics, Combo appears to consistently
eturn partitions with high AMIs on a larger number of these 104
nstances. The twelve panels for Combo and different variations of
NN and Bayan show fewer instances of low AMI values indicating

hat these three algorithms are overall more successful at returning
artitions highly similar to an optimal partition. The panels for Bayan
how that decreasing the approximation tolerance (gradually from 0.9
o 1𝑒−5) leads to a gradual increase in the resulting AMI values. Unlike
euristics whose performance cannot be controlled through a user-
pecified parameter, Bayan provides the user with the flexibility to
btain approximations closer to optimal by reducing the tolerance (at
he cost of additional computations).

The most important pattern in Fig. 4 is observed when we focus
n the positions of data points with respect to the 45-degree lines. We
bserve that the data points are mostly located above their correspond-
ng 45-degree line. This indicates that, irrespective of the algorithm,
ub-optimal partitions tend to be disproportionately dissimilar to any
ptimal partition (as foreshadowed in [54]). This result goes against
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Fig. 4. Global optimality percentage (GOP) and normalized adjusted mutual information (AMI) measured for each algorithm by comparing its results with (all) globally optimal
artitions. (Magnify the high-resolution figure on screen for more details.)
he naive viewpoint that close-to-maximum modularity partitions are
lso close to an optimal partition. Our results are aligned with previous
oncerns that modularity maximization heuristics have a high risk of
lgorithmic failure [6] and may result in degenerate solutions far from
he underlying community structure [26].

To ensure that the observations made are not artefacts of using AMI,
e also report the RMI and ECS values of the same partitions. Figs. 5–
have x-axes values based on RMI and ECS respectively and show

OP on their y-axes. Similar observations can be made from the RMI
nd ECS values of these partitions: (1) x-axes values in Figs. 5–6 for
artitions of all heuristics except Combo show substantial dissimilarity
o any optimal partitions of these networks. (2) GNN, Combo, and
ayan return partitions with higher similarity to the optimal partitions,
lso when RMI or ECS are used. (3) Most data point are above their
orresponding 45-degree lines indicating that sub-optimal partitions
end to be disproportionately dissimilar to any optimal partition (from
MI and ECS perspectives).

.3. Distribution of partition similarity measures for each algorithm

In the scatter-plots Figs. 4–6, data points overlap with each other
nd therefore distributions are not visible. Fig. 7 complements the
bservations made from Figs. 4–6. Fig. 7 illustrates for each algorithm
he box plots of AMI, RMI, and ECS values, obtained on all 104
etworks. Each box in Fig. 7 shows: the first quartile (𝑄1), the median

(𝑄 ), and the third quartile (𝑄 ) of the distribution for one similarity
7

2 3
measure and one algorithm. The whiskers are drawn from the nearest
hinge (𝑄1 or 𝑄3) to the farthest datapoint within the 1.5 interquartile
range (±1.5(𝑄3 −𝑄1)).

The distributions for the three measures AMI, RMI, and ECS are
quite similar reaffirming that the differences between algorithms ob-
served in Section 4.2 are irrespective of the choice of partition sim-
ilarity measure. The alignment between our AMI and RMI results is
consistent with the results in [43] while that study recommends using
RMI.

Belief, Edmot, and Paris have the three widest distributions for all
three similarity measures. For Paris, the medians of all three measures
are below 0.8 indicating that its failure (in returning partitions that
are at least 80% similar to optimal) happens on half of these instances.
The median ECS for Belief is also below 0.8 which can be interpreted
similarly. For CNM and EdMot, the medians are around 0.85 and 0.9
showing the same issue but to a lesser degree.

All the distributions are left-skewed indicating higher variability
among values below the median. Compared to the other heuristics,
Louvain, Leiden, LN, and Combo have distributions with smaller ranges
and higher medians. Both variations of the GNN algorithm have wider
distributions than Combo. The nine variations of the Bayan algorithm
have medians extremely close to 1 with some of them also having the
smallest ranges among all the algorithms considered. We reobserve the
expected pattern that reducing the approximation threshold of Bayan
(from 0.9 to 1𝑒 − 5) generally leads to better performance (higher

similarity to an optimal partition with lower variation).
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Fig. 5. Global optimality percentage (GOP) and normalized reduced mutual information (RMI) measured for each algorithm by comparing its results with (all) globally optimal
partitions. (Magnify the high-resolution figure on screen for more details.)
4.4. Empirical time comparison of the algorithms

All these algorithms attempt to solve the same optimization prob-
lem: maximizing modularity, but their ways of exploring the feasible
space are widely different leading to considerably different solve times
for their specific computations (which are inherently unalike). Fig. 8
shows for each algorithm a box plot of its empirical solve times mea-
sured on the 104 networks. Note that the 𝑦-axis of Fig. 8 is on a
logarithmic scale. These solve times are empirical and depend on the
computing resources used, but are comparable to each other because
the same computing resources were used for all the algorithms.

Box plots of two algorithms stand out: GNN-25K has the longest
solve time (and a median of 247 s) followed by the Belief algorithm
(that has a median of 8.4 s). The median solve time of GNN-100 (0.56 s)
and that of five Bayan variations are similar (those with approximation
tolerances from 0.1 to 0.9). Other variations of Bayan have a median
solve time above one second with the slowest variation (Bayan 1𝑒 − 5)
aving a median of 1.97 s. The distributions of solve times for all
ariations of Bayan are left-skewed with their 𝑄1 solve time often being
maller than their median solve time by an order of magnitude. The
idest boxes belong to the solve times of different Bayan variations for
hich the 𝑄3 is often an order of magnitude larger than 𝑄2. Except for

Belief, the heuristic algorithms are 1–2 orders of magnitude faster than
GNN and Bayan; with Leiden and LN being the fastest algorithms in our
analysis.

The solve time distributions of all algorithms have outliers (values
larger than the top whisker of the box plot). All 104 instances consid-
ered are networks with tens to a few thousands of edges. Therefore,
8

the outliers existing for almost all algorithms indicates that solving
some instances take much longer than the typical solve time of that
algorithm for that range of input size. This can be partially explained by
the differences in graph structures. Some graphs have a structure close
to the structure of a random graph (and far from a modular structure).
Finding a high-modularity partition for such graphs takes orders-of-
magnitude longer (than the typical time for networks of that size range)
irrespective of the algorithm used.

Fig. 9 shows the same solve times, but with different arrangement
and visualization. It shows how the average empirical solve time of
each algorithm changes as the input size increases. For Fig. 9, we group
the 104 networks into four bins based on their graph sizes (number of
edges) and plot the average solve time of each algorithm for each of the
four bins of instances. Note that the 𝑦-axis in Fig. 9 is in logarithmic
scale. It can be observed that GNN-25k has the highest solve time
among all algorithms; on average, it takes over 1000 s for graphs with
more than 750 edges.

The solve time of these algorithms are generally increasing with
input size, but Fig. 9 does not show a monotonic increase for some
methods like Bayan 1e−5 and Bayan 1e−4. In case of Bayan, this can
be partly explained by considering that some larger instances in our
analysis have modular structures that have facilitated the exploration
of Bayan for approximating an optimal solution. Different variations of
Bayan, Belief, and GNN-100 take order-of-magnitude longer than other
modularity-based algorithms. At the other extreme, LN and Leiden are
the fastest among all algorithms in our analysis. Counting the horizon-
tal gridlines in Fig. 9, there are five orders of magnitude difference in

empirical solve time between the slowest (GNN-25k) and the fastest
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Fig. 6. Global optimality percentage (GOP) and element-centric similarity (ECS) measured for each algorithm by comparing its results with (all) globally optimal partitions.
(Magnify the high-resolution figure on screen for more details.)
(Leiden and LN) algorithms for processing instances of comparable
sizes.

4.5. Success rates of the algorithms in maximizing modularity

The GOP values help us answer a fundamental question about these
modularity-based algorithms: how often does each algorithm return
an optimal partition? We report the fraction of networks (out of 104)
for which a given algorithm returns an optimal partition. A similar
assessment of some of these algorithms on a different set of networks
is provided in [50].

Fig. 10 shows the success rates of all algorithms and their variations
in achieving global optimality on the 104 networks considered. Among
the eight heuristics, Combo has the highest success rate, returning
an optimal partition for 90.4% of the networks. The average success
rate of all 8 heuristics combined is 43.9%. With the exception of
Combo, the rates for these heuristics are arguably low success rates for
what the name modularity maximization algorithm implies or the idea
of discovering network communities through maximizing a function.
The two variations of GNN have markedly different success rates and
their average success rate is 68.7%. The least restricted version of
approximate Bayan (Bayan 0.9) returns optimal partitions on 75% of
networks and is more successful than the average heuristic and the
average GNN variation. Bayan’s success rate increases to 91.3% when a
sufficiently small approximation threshold is chosen. This indicates that
in the context of solving this NP-hard graph optimization problem, an
optimization procedure (branch and cut which is used in Bayan) can
be more successful than other existing alternatives (e.g., heuristics and
9

GNNs). After all, modularity maximization is a mathematical optimiza-
tion task and therefore it is safe to assume that guaranteed approximate
optimization methods would likely be hard to outperform in optimality
success rate; acknowledging that they most likely take longer and can
only be used for small and mid-sized networks. Fig. 10 also shows that
using Bayan with a smaller approximation tolerance value often leads
to a higher success rate.

Earlier in Figs. 4–6, we observed that near-optimal partitions tend
to be disproportionately dissimilar to any optimal partition. In other
words, close-to-maximum modularity partitions are rarely close to any
optimal partition. Taken together with the low success rates of the
average heuristic in maximizing modularity, our results indicate a
crucial mismatch between the design philosophy of these methods
and their average capability: most heuristic modularity maximization
algorithms rarely return an optimal partition or a partition resembling
an optimal partition even on graphs with modular structures.

5. Discussions and future directions

Understanding modularity capabilities and limitations has been
complicated by the under-explored performance of modularity maxi-
mization algorithms on the task that is literally in their name: modular-
ity maximization. Previous methodological studies [11,55–57], which
have shed light on other aspects, have rarely disentangled the unguar-
anteed aspect of the inexact optimization from the fundamental concept
of modularity. Our study is a continuation of previous efforts [26] in
separating the effects of sub-optimality (or the choice of using greedy
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Fig. 7. The box plots of similarity to an optimal partition (AMI in the top panel, RMI in the center panel, and ECS in the bottom panel) for each algorithm based on all 104
network instances. (Magnify the high-resolution figure on screen for more details.)

Fig. 8. Box plots representing the empirical solve time of the algorithms for the 104 networks. The 𝑦-axis is in logarithmic scale. (Magnify the high-resolution color figure on
screen for more details.)
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Fig. 9. Average solve time of different methods based on bins of input size. The 𝑦-axis is in logarithmic scale. (Magnify the high-resolution color figure on screen for more details.)
Fig. 10. Ten algorithms and their variations ranked based on their success rate in
achieving global optimality on the 104 networks considered.

algorithms [6]) from the effects of using modularity on the fundamental
task of detecting communities.

We analyzed the effectiveness of eight heuristics [25,29,30,32–36],
two variations of a GNN [27], and several variations of an approxima-
tion algorithm [28] in maximizing modularity. While our findings are
limited to only a handful of algorithms, their combined usage by tens
of thousands of peer-reviewed studies [4] motivates the importance of
this assessment. Most heuristic algorithms for modularity maximization
tend to scale well for large networks [58]. They are widely used not
only because of their scalability or ease of implementation [6], but also
because their high risk of algorithmic failure is not well understood [6].
The scalability of these heuristics comes at a cost: their partitions have
11

no guarantee of proximity to an optimal partition [26] and, as our d
results showed, the average heuristic rarely returns an optimal partition
even on modular graph structures. Moreover, we showed that their
sub-optimal partitions tend to be disproportionately dissimilar to any
optimal partition irrespective of the partition similarity metric chosen.

Our approach of quantifying similarity between partitions using
AMI, RMI, and ECS has some merits over our earlier study [50], but it
still has some limitations. An alternative approach involves identifying
building blocks across different candidate partitions of a network [59].
These building blocks are groups of nodes that are usually found
together in the same community. Riolo and Newman propose a method
for finding building blocks and suggest that building blocks obtained
in their results are largely invariant for a given network while different
arrangements of the same building blocks lead to different partitions
of that network [59]. While this is a viable explanation of some of the
variations between some community detection algorithms, our results
do not fully match with this interpretation of partition dissimilarities.
For example, the communities (shown by colors) in Fig. 2 can only be
interpreted as a specific arrangement of very small building blocks in-
cluding blocks made up of a single node. In this case with such building
block sizes, finding a suitable arrangement of these extremely small
building blocks is arguably the whole task of community detection on
which modularity-based algorithms perform differently.

Neither using modularity nor succeeding in maximizing it is re-
quired for CD at the big-picture level. A common narrative in the
literature is debating whether modularity is suitable or not [11,60]. We
argue that such a debate is an oversimplification because suitability of
using modularity depends on the task6, the context, and several other
factors including (1) whether it used as an objective function [38]
or as a partition quality function [60]; (2) how the maximization is
operationalized; and (3) what advantages are offered by the alter-
natives to use instead of modularity. Our results shed light on the
first two questions, but are not related to alternative methods that do
not use modularity. A recent study claims modularity maximization
is the most problematic CD method and considers it harmful [11].

6 See [1] for four widely different tasks that are all referred to as community
etection.



Journal of Computational Science 78 (2024) 102283S. Aref and M. Mostajabdaveh

𝜏

Another study shows that, given computational feasibility, exact max-
imization of modularity outperforms 30 other CD methods in accurate
and stable retrieval of ground-truth communities in both LFR and ABCD
benchmarks [28] suggesting the relevance of modularity for CD.

Our results were based on small and mid-sized networks with
no more than 2812 edges. We showed the extent to which each
modularity-based method succeeds in returning optimal partitions or
partitions resembling optimal partitions. Given that modularity max-
imization is an NP-hard problem, it is not reasonable to expect that
the performance of these inexact methods suddenly increases for large-
scale networks. The extent of their failures on large-scale networks is
not quantified yet. However, the average success rate of 43.9% sug-
gests the performance in maximizing modularity that can be expected
from these heuristics. This expectation is realistic for small and mid-
sized networks, and it is arguably optimistic for large-scale networks.
Our findings suggest that if modularity is to be used for detecting
communities, using approximation [28,54,61,62] and exact [28,63,64]
algorithms is recommendable for a more methodologically sound usage
of modularity within its applicability limits.

A promising path forward could be using the advances in integer
programming to develop better approximation algorithms (outperform-
ing approximate Bayan) for solving the mathematical models of mod-
ularity maximization [38,40,41] on networks of practical relevance
within the limits of computational feasibility. New heuristic algorithms
that strike a balance between accurate computations and scalability
(achieving or surpassing the performance of methods like Combo and
Leiden, but with higher scalability) may also be useful particularly for
large-scale networks.
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Appendix

Justifying the use of AMI, RMI, and ECS and the exclusion of other popular
measures of partition similarity

We use AMI, RMI, and ECS because they are shown to be reliable
measures of partition similarity [43–45,49].

We avoid using the Normalized Mutual Information (NMI) because,
despite its common use, several studies indicate that its usage leads to
incorrect assessments [44,45,49] and incorrect evaluation of compet-
ing algorithms [43]. For example, consider two arbitrarily dissimilar
12

partitions A and B, each made up of two communities and their NMI
taking the value 0.1 (for the sake of argument). If we take partition B
and split each of its communities into several communities, the NMI
between the resulting partition and partition A will increase; and this
increase is monotonic with the more we split partition B [49]. Despite
that this undesirable bias of the NMI towards the number of clusters
has been well documented for several years [49], NMI is still among
the most popularly used [13,14,23,46–48] metrics for quantifying the
similarity of partitions [43].

Similar to the NMI, other popularly used measures of partition
similarity suffer from at least one form of undesirable bias [49]. We also
avoid using any of the four measures: the Jaccard index, the Fowlkes-
Mallows index, the adjusted Rand index, and the F-measure because
they suffer from a bias that favors skewed cluster sizes [49].

Accessing the data for real and synthetic networks

The data on the 50 LFR and ABCD graphs used in this study are
available in a FigShare data repository [65].

The LFR benchmarks used in this study were randomly generated
based on the following parameters: number of nodes (𝑛) randomly
chosen from the range [20, 300], maximum degree ⌊0.3𝑛⌋, maximum
community size ⌊0.5𝑛⌋, power law exponent for the degree distribution
1 = 3, power law exponent for the community size distribution 𝜏2 =
1.5, and average degree of 4. The parameter 𝜇 (LFR mixing parameter)
was chosen from the set {0.01, 0.1} (10 LFR graphs for each value of 𝜇).

The ABCD benchmarks were randomly generated based on the
following parameters: number of nodes (𝑛) randomly chosen from the
range [10, 500); minimum degree 𝑑𝑚𝑖𝑛 and minimum community size
𝑘𝑚𝑖𝑛 randomly chosen from the range [1, 𝑛∕4); maximum community
size chosen randomly from [𝑘𝑚𝑖𝑛 + 1, 𝑛); maximum degree chosen ran-
domly from [𝑑𝑚𝑖𝑛 + 1, 𝑛); and power law exponents for the degree
distribution and community size distribution randomly from (1, 8) and
then rounded off to 2 decimal places. The parameter 𝜉 (ABCD mixing
parameter) was chosen from the set {0.01, 0.1, 0.3} (10 ABCD graphs for
each value of 𝜉).

The 54 real networks were loaded as simple unweighted and undi-
rected graphs. They are available in the publicly accessible network
repository Netzschleuder with the 54 names below:

dom, packet_delays, sa_companies, ambassador, florentine_families,
rhesus_monkey, kangaroo, internet_top_pop, high_tech_company, mov-
iegalaxies, november17, moreno_taro, sp_baboons, bison, dutch_school,
zebras, cattle, moreno_sheep, 7th_graders, college_freshmen, hens,
freshmen, karate, dutch_criticism, montreal, ceo_club, windsurfers,
elite, macaque_neural, sp_kenyan_households, contiguous_usa, cs_
department, dolphins, terrorists_911, train_terrorists, highschool, law_
firm, baseball, blumenau_drug, lesmis, sp_office, polbooks, game_
thrones, football, football_tsevans, sp_high_school_new, revolution, stu-
dent_cooperation, interactome_pdz, physician_trust, malaria_genes, mar-
vel_partnerships, facebook_friends, netscience

For more information on each network and its original source, one
may check the Netzschleuder website by adding the network name
at the end of the url: https://networks.skewed.de/net/. For example,
https://networks.skewed.de/net/malaria_genes provides additional in-
formation for the malaria_genes network. In cases of multiple networks
existing with the same name in Netzschleuder, we have only used
the lexicographically first network (e.g. we have only used the HVR_1
network from https://networks.skewed.de/net/malaria_genes).
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