Celal Cakiroglu, Farnaz Batool, Kamrul Islam et Moncef L. Nehdi
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (8MB) |
Abstract
Cement-based foam has emerged as a strong contender in sustainable construction owing to its superior thermal and sound insulation properties, fire resistance, and cost-effectiveness. To effectively use cement-based foam as a thermal insulation material, it is important to accurately predict its thermal conductivity. The current study aims at coining an accurate methodology for predicting the thermal conductivity of cement-based foam using state-of-the-art machine learning techniques. A comprehensive experimental dataset of 504 data points was developed and used for training ensemble learning models including XGBoost, CatBoost, LightGBM and Random Forest. The independent variables of this dataset affecting the thermal conductivity are the cast density, percentage of pozzolan, porosity, percentage of moisture, and duration of hydration in days. Using the Isolation Forest algorithm proved effective in detecting and eliminating outliers in the dataset. All the ensemble learning techniques explored in this study achieved superior predictive accuracy with a coefficient of determination greater than 0.98 on the test dataset. The influence of the input features on the thermal conductivity was visualized using the SHapley Additive exPlanations (SHAP) approach and individual conditional expectation (ICE) plots. The cast density had the greatest effect on thermal conductivity. The explainable machine learning models demonstrated superior accuracy, efficiency, and reliability in estimating the thermal insulation of cement-based foam, opening the door for wider acceptance of this material in sustainable energy efficient construction.
Mots clés
cement-based foam; thermal conductivity; model prediction; machine learning; explainable; ensemble learning
Sujet(s): |
1000 Génie civil > 1000 Génie civil 1000 Génie civil > 1001 Génie et gestion du bâtiment |
---|---|
Département: | Département des génies civil, géologique et des mines |
URL de PolyPublie: | https://publications.polymtl.ca/57846/ |
Titre de la revue: | Construction and Building Materials (vol. 421) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.conbuildmat.2024.135663 |
URL officielle: | https://doi.org/10.1016/j.conbuildmat.2024.135663 |
Date du dépôt: | 28 mars 2024 15:20 |
Dernière modification: | 25 sept. 2024 18:51 |
Citer en APA 7: | Cakiroglu, C., Batool, F., Islam, K., & Nehdi, M. L. (2024). Explainable ensemble learning predictive model for thermal conductivity of cement-based foam. Construction and Building Materials, 421, 135663 (15 pages). https://doi.org/10.1016/j.conbuildmat.2024.135663 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions