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Explainable ensemble learning predictive model for thermal conductivity of 
cement-based foam 

Celal Cakiroglu a, Farnaz Batool b, Kamrul Islam c, Moncef L. Nehdi d,* 
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A B S T R A C T   

Cement-based foam has emerged as a strong contender in sustainable construction owing to its superior thermal 
and sound insulation properties, fire resistance, and cost-effectiveness. To effectively use cement-based foam as a 
thermal insulation material, it is important to accurately predict its thermal conductivity. The current study aims 
at coining an accurate methodology for predicting the thermal conductivity of cement-based foam using state-of- 
the-art machine learning techniques. A comprehensive experimental dataset of 504 data points was developed 
and used for training ensemble learning models including XGBoost, CatBoost, LightGBM and Random Forest. The 
independent variables of this dataset affecting the thermal conductivity are the cast density, percentage of 
pozzolan, porosity, percentage of moisture, and duration of hydration in days. Using the Isolation Forest algo-
rithm proved effective in detecting and eliminating outliers in the dataset. All the ensemble learning techniques 
explored in this study achieved superior predictive accuracy with a coefficient of determination greater than 0.98 
on the test dataset. The influence of the input features on the thermal conductivity was visualized using the 
SHapley Additive exPlanations (SHAP) approach and individual conditional expectation (ICE) plots. The cast 
density had the greatest effect on thermal conductivity. The explainable machine learning models demonstrated 
superior accuracy, efficiency, and reliability in estimating the thermal insulation of cement-based foam, opening 
the door for wider acceptance of this material in sustainable energy efficient construction.   

1. Introduction 

Population growth, urbanization, and the associated colossal up-
surge in energy consumption have increased the demand for sustainable 
and energy− efficient construction materials throughout the world. 
Hence, cement and energy production experienced a considerable rise. 
Cement production has contributed to the global increase in carbon 
dioxide emissions and is responsible for 7% of total CO2 generated in the 
world [29]. Therefore, it has become an absolute necessity to reduce the 
carbon footprint of cement production. 

Generally, about 50% of total generated electricity is consumed by 
households, which makes the availability of energy for the other sectors 
of the economy more challenging. This has led the construction industry 
to explore various insulating materials with reduced embodied carbon 
and less energy consumption. Recently, cement-based foam has emerged 
as a prospective building material owing to its ease of fabrication, good 

insulation, low density, and potential of reducing CO2 emissions by 
utilizing agriculture/industrial byproducts as pozzolanic ingredients 
[6]. Cement− based foam is a porous and lightweight building material 
in which preformed foam is deliberately added to a base mixture made 
up of portland cement, water, and aggregates to create an air void 
network [5]. 

The cast density of cement− based foam ranges between 300 and 
1600 kg/m3; the lighter densities (<800 kg/m3) are attractive for void- 
fill and insulation applications, while the heavier mixtures are used for 
structural purposes [5]. Other cement-based foam applications include 
producing lightweight blocks and pre-cast panels, fire insulation, ther-
mal and acoustic insulation, road subbase, trench reinstatement, soil 
stabilization, and shock− absorbing barriers for airports and regular 
traffic [2]. Also, due to flowability features, cement− based foam is a 
superlative material for filling voids such as old sewers, storage tanks, 
basements, ducts, and voids under roadways caused by cliff of heavy 
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rains. In addition, foamed concrete applications are cost− effective at 
repairing and rehabilitating structures [2]. 

Jia et al. [14] conducted experiments to design an optimal compo-
sition of fluorine-free foam concrete with different amounts of 
nano-silica. Their results showed that nano-silica can reduce 
fluorine-free foam concrete’s dry density and thermal conductivity, in-
crease its impermeability and compressive strength, and improve the 
performance of fluorine-free foam concrete, making it a promising 
inorganic insulation material for building exterior walls. Li et al. [16] 
used hydroxy-terminated polydimethylsiloxane and tetraethyl orthosi-
licate to modify magnesium oxychloride cement and make it 
water-resistant and superhydrophobic. Hydrogen peroxide (H2O2) was 
used as a foaming agent to create pores in the magnesium oxychloride 
cement, reducing thermal conductivity and improving thermal insu-
lation performance. 

Jin et al. [15] investigated the effects of different volume fractions of 
basalt fiber and coir fiber, and different mixture ratios of cement, sand, 
and water on the physical, mechanical, and durability properties of 
hybrid natural fiber-reinforced roadbed foamed concrete. Using scan-
ning electron microscopy and X-ray diffraction, the microstructure of 
hybrid natural fiber-reinforced roadbed foamed concrete was analyzed. 
The optimal fiber content and mixture ratios were deduced to be 0.3% 
and 1:2, respectively. Incorporating hybrid natural fibers was shown to 
be effective at improving the performance of foamed concrete for 
roadbed applications. Wu et al. [40] reported the results of flexible wall 
permeameter unconfined compressive strength, mercury intrusion 
porosimetry, and scanning electron microscopy tests on foamed 
cement-stabilized marine clay samples with different cement ratios, 
densities, and metakaolin additives. It was found that foamed 
cement-stabilized marine clay had significantly higher hydraulic con-
ductivity than that of ordinary cement-stabilized clays, while main-
taining adequate strength. The macro pore volume mainly influenced 
the hydraulic conductivity, while the strength was enhanced by the 
cementation of cement and metakaolin. It was concluded that foamed 
cement-stabilized marine clay can be a viable material for permeable 
cement-stabilized columns that can improve the settlement uniformity 
and long-term safety of soft clay foundations. 

Mikulica et al. [28] presented foam concrete as a better alternative to 
slag and slag concrete for the rehabilitation of floor structures. The 
properties, production, and testing of various mixtures of foam concrete 
were examined. Zhao et al. [42] proposed a new material made of 
foamed cement, expandable polystyrene particles and polypropylene 
fiber as a sacrificial cladding for tunnel lining structures to provide blast 
mitigation effects. The impact resistance, compressive strength, and 
energy absorption performance of the foamed cement-base material 
with different ingredient proportions were investigated. Laboratory 
experiments and finite element analysis showed that the newly proposed 
foamed cement-base material was a viable option for the sacrificial 
cladding of tunnel lining structures for blast mitigation. 

Among other building materials, foamed concrete has excellent 
thermal insulating properties. A reduction of 35% in thermal conduc-
tivity by reducing the density from 800 to 600 kg/m3 and a further drop 
of 6% with the addition of pozzolans like fly ash, silica fume was re-
ported [6]. Compressive strength of 0.6 MPa − 43 MPa for the density 
range of 300 − 1800 kg/m3 at 28 days was achieved. Tan et al. [37] 
investigated the effects of aerogel and hydrogen peroxide on the density, 
compressive strength, thermal conductivity, sound absorption, porosity, 
and water absorption of foamed lightweight cementitious composites. It 
was reported that the optimum foamed lightweight cementitious com-
posite mixture had 1% aerogel and 3% hydrogen peroxide, which 
resulted in low density, adequate strength, high porosity, and improved 
thermal and acoustic insulation properties. Raj et al. [34] studied foam 
concrete as a thermal insulation material for buildings. Cement, fly ash, 
and rice straw were used to produce foam concrete cladding with 
different foam volumes and fiber contents. Compressive strength and 

thermal conductivity tests showed 1% rice straw and 20% foam volume 
configuration as the optimum mixture. 

Li et al. [17] investigated the thermal performance and economy of 
phase change material foamed cement walls for buildings in five 
different climate zones in China. It was found that phase change material 
foamed cement can moderate the indoor and outdoor temperature dif-
ferences in all climate zones, and the optimal phase transition temper-
ature was close to the local annual average temperature, except for the 
severe cold zone. Meng et al. [27] examined the preparation of phase 
change material foamed cement with different foaming rates. The 
thermal conductivity of the material was tested under different tem-
peratures. It was shown that phase change material foamed cement roof 
can reduce the roof’s internal surface temperature and attain better heat 
gain than a benchmark ordinary roof. 

Cement-based foam is a promising construction material owing to its 
low thermal conductivity in comparison to conventional materials, 
which allows significant energy savings. However, predicting the ther-
mal conductivity of cement-based foam has not been duly investigated. 
Accordingly, there is lack of reliable and widely adopted prediction tools 
for the thermal conductivity of cement-based foam. The current study 
aims to address this research gap by deploying state-of-the-art machine 
learning techniques such as XGBoost, LightGBM, CatBoost and Random 
Forest. Given their high accuracy and data-driven approach, which en-
ables generalization, machine learning models are increasingly applied 
in predicting the behavior and properties of diverse construction ma-
terials (Ben [10,26,32,33,35,36,25]). The results of this study can be 
implemented towards better estimating the thermal conductivity of 
cement-based foams, thereby increasing the applicability of this sus-
tainable construction material. 

The subsequent sections present the statistical distribution of the 
original dataset and the isolation forest procedure used for enhancing 
the dataset quality via outlier detection and removal. The dataset was 
obtained from an experimental program the details of which are 
explained in the following section. After a brief overview of the gradient- 
boosting methodology used in model training, the predictions of four 
different ensemble learning models are visualized. The performances of 
these ensemble learning models are quantified using common accuracy 
metrics such as the coefficient of determination. The model hyper-
parameters are optimized using Cost-related Frugal Hyperparameter 
Optimization (CFO), and Economical Hyperparameter Optimization 
with Blended Search Strategy (BlendSearch) algorithms. The influence 
of different input features on the model predictions are then investigated 
using SHAP and individual conditional expectation plots. 

2. Database development 

The present study develops highly accurate machine learning models 
for the prediction of the thermal conductivity of cement-based foam. 
These models are based on a dataset of 504 samples compiled from 
experiments. In these experiments, cement-based foam with three cast 
densities of 800 kg/m3, 600kg/m3, and 400 kg/m3 was tested. SEM 
images of these concrete samples are shown in Fig. 1. Maintaining these 
densities, 21 mixtures were prepared by replacing fly ash, silica fume, 
and metakaolin with cement at a ratio of 10% and 20%, respectively. 
These cement-based foam samples were prepared by adding stable foam 
with density of 40 kg/m3 generated using a synthetic foaming agent into 
a cement slurry. The mixing of stable foam primarily creates air void in 
the cementitious matrix, making it porous and lightweight. In this pro-
cess, an optimal water-to-cement ratio is required to maintain the 
quality of the cement-based foam samples. Therefore, based on trials, a 
water/binder ratio of 0.69 was used throughout to maintain uniformity. 
The cement-based foam mixtures were cast into 150 mm×75 mm cyl-
inders and stored in a water curing room for 28 days. After the 
completion of the curing period, the samples were left at room tem-
perature of 21 ± 2 ◦ C and an average relative humidity of 65 ± 5%. 

The Hot Disk Thermal Constant Analyzer (Fig. 2), which operates on 
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the transient plane source technique, was used to measure the thermal 
conductivity of specimens from all these mixtures. The equipment 
needed in the application of this technique is depicted in Fig. 2. This 
analyzer consists of a hot disk sensor, which acts both as a heat source 
and resistance thermometer for increasing the temperature and 
recording the time-dependent temperature rise. Samples with 22 mm 
thickness and 75 mm diameter were used as they provide sufficient 
surface for placing the sensor. All specimens were examined at room 
temperature and curing ages of 60, 120, 210, and 300 days, respectively. 
The moisture content of specimens from all mixtures was measured 
through over-drying as per the guidance of ASTM C566 [4]. At the age of 

300 days, X-ray tomography scanning was carried out and images were 
collected for all the mixture samples. Skyscan 1076 X-ray computed 
tomography machine, which consists of a high-performance micro-CT 
scanner with an X-ray source supply of 20–100 kV and X-ray detector of 
4000 ×2672 pixels, was used. From the sample size of 35 mm x 35 mm 
and 14 mm height, a total of 1500 images were captured. These raw 
images were subsequently analyzed and quantified for porosity and air 
void distribution using Skyscan CT-analyzer software. 

Fig. 1. Scanning electron microscopy (SEM) images of cement-based foam for the cast density of a) 800 kg/m3, b) 600 kg/m3, and c) 400 kg/m3 [8].  

Fig. 2. a) Foam Generating Machine; b) Prepared Foam Ready to incorporate into Cementitious Slurry c) Thermal Plane Source Analyzer; d) Disc placed on the 
strand; e) Sensor; f) Insulating container [6]. 

C. Cakiroglu et al.                                                                                                                                                                                                                              



Construction and Building Materials 421 (2024) 135663

4

3. Statistics analysis of dataset 

This section presents the statistical distribution of the features that 
constitute the dataset used in training the ML models. The correlation 
plot in Fig. 3 displays the distribution of each feature in its diagonal. 
These distributions show that the input features cast density and per-
centage of pozzolan are concentrated around three discrete values, 
whereas the number of days of hydration (curing age) is concentrated 
around four discrete values. On the other hand, the remaining input 
features, and the output feature (thermal conductivity) have a contin-
uous distribution. The upper right triangular part of this plot contains 
the Pearson correlation coefficient between the features where the 
strength of correlation is shown with stars. The bivariate scatter plots of 
the features are shown in the lower left triangular part of Fig. 3, where 
the water-to-cement ratio was not included since this variable has a 
constant value of 0.69 in all samples. The magnitude range of each 
feature on a diagonal tile is shown in a horizontal and a vertical axis in 
Fig. 3. 

It can be observed in Fig. 3 that the greatest correlation is between 
the cast density and thermal conductivity with a correlation coefficient 
of 0.92. A strong inverse correlation can be observed between the 
porosity and the cast density with a correlation coefficient of − 0.91. 
Also, a relatively strong inverse correlation can be observed between the 
days of hydration and the moisture percentage. The Pearson correlation 
coefficient rxy between two data sequences x and y is calculated as in Eq. 
(1) where n is the length of x and y. 

rxy =

n
∑n

i=1
xiyi −

∑n

i=1
xi
∑n

i=1
yi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑n

i=1
x2

i −

(
∑n

i=1
xi

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑n

i=1
y2

i −

(
∑n

i=1
yi

)2
√ (1)  

4. Outlier detection 

Outlier detection is a significant part of a robust ML process, which 
aims to improve the quality of the dataset used to train predictive 
models. In this active research field, many novel techniques have been 
developed in recent years [3,9,13,30,39]. In this study the isolation 
forest and multivariate Gaussian distribution methods were applied for 
finding and removing the outliers in the dataset. The isolation forest 
algorithm differs from most statistical anomaly detection techniques in 
that it does not require the profiling of normal data points and the 
identification of samples that do not conform to the normal profiles as 
anomalies [18]. The approach adopted in the isolation forest algorithm 
is based on separating each data point using binary trees and using the 
tree length required to isolate each data point as an indicator of 
anomaly. The isolation of anomalous samples is possible since they are 
expected to be relatively small in number and to differ from the rest of 
the data set in their input feature values. 

The process of data sample isolation is graphically illustrated in  
Fig. 4., which represents an isolation tree for a dataset with two input 
features denoted by x1 and x2. The isolation forest algorithm creates an 
ensemble of binary trees that isolate every data point. The binary trees in 
the ensemble differ from one another since each of them has a root node 
containing a randomly selected input feature and a random splitting 
point for that feature. As an example of this random selection, the tree in 
Fig. 4b starts with splitting the feature x2. For each data point, the path 
length necessary to isolate the point is calculated and the average value 
of this path length in the entire ensemble of isolation trees is assigned to 
that data point as a measure of anomaly. 

As shown in Fig. 4, the outliers tend to be closer to the root, while the 
inlier points tend to be closer to the deep end of the tree. The data points 
X1 and X10 that deviate from the dataset average are colored in red in 
Fig. 4a. It can be observed from Fig. 4b that these two points are also the 
closest points to the tree root with the least path lengths. These path 
lengths may be affected by the choice of the initial input feature and 

Fig. 3. Correlation plot of the model input features.  
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splitting points at each node in different trees of the ensemble. However, 
on average the outliers are expected to be closest to the root node. It 
should be noted that, as the number of trees in the ensemble increases, 
the average path length of each data point converges to a certain value 
[18,19]. 

5. Gradient boosting algorithms 

Gradient boosting is a machine learning method that generates a 
prediction model in the form of a collection of weak prediction models, 
usually decision trees. Among the most widely used gradient boosting 
algorithms, Extreme Gradient Boosting (XGBoost), Random Forest, Light 
Gradient Boosting Machine (LightGBM), and Categorical Boosting 
(CatBoost) are commonly deployed. The gradient boosting technique 
performs particularly well with large datasets in terms of prediction 

speed and accuracy. Gradient boosting starts with the training of an 
initial model using the training dataset. The prediction accuracy of this 
initial model is evaluated and the subsequent models in the ensemble of 
the decision trees improve the accuracy of the initial model. New 
corrective models are added to this ensemble until a certain level of 
accuracy, or the maximum number of decision trees has been reached 
[1]. The process of this incremental training of an ensemble model is 
illustrated in Fig. 5. In Fig. 5, the term fk(X) is the function that returns 
the output of the k-th decision tree, and the residuals of each decision 
tree are denoted with εk. Since each new tree that comes after the initial 
tree returns a correction value for the model consisting of the previous 
trees, the final model prediction can be expressed as the sum of all de-
cision tree outputs. 

Fig. 4. a) Process of data sample isolation, and (b) example of isolation tree.  
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6. Predictions of ML models 

The models were trained on a dataset that initially consisted of 504 
samples. This dataset has been further refined in terms of outliers and 
the final ML models have been trained after the removal of 48 outlier 
data points. The dataset was split into a training set (70%) and a test set 
(30%). The input features in this dataset are the cast density, water-to- 
cement ratio, percentage of pozzolan, porosity, moisture percentage, 
and hydration days, whereas the output feature is thermal conductivity. 
These input features were selected since they directly influence the 
thermal conductivity of cement-based foam, making it an effective 

insulation material. Cast density was selected as an input feature 
because it determines the amount of air voids in the foam, which are 
intentionally created to reduce weight and improve the insulating ca-
pacity. This is a direct consequence of air having low thermal conduc-
tivity. Porosity is another input feature that reflects the ratio of air voids 
to solid material in the foam. High porosity is an indicator of low density 
and low thermal conductivity. Percentage of pozzolan represents the 
amount of supplementary cementitious material that is added to the 
Portland cement, which can affect the thermal conductivity of the foam. 
Percentage of moisture is an input feature that indicates the water 
content, which can have an adverse effect on the thermal conductivity of 
the foam. Finally, the hydration days feature captures the time elapsed 
since the foam was mixed with water. It reflects the degree of hydration 
and evaporation of water in the foam, which influences the thermal 
conductivity. Fig. 6 displays the predictions of the XGBoost, CatBoost, 
Random Forest, and LightGBM models, showing plots of the predicted 
thermal conductivity values against the actual measured values. The 
scaling of the dataset was carried out prior to model training to bring all 
input features to the same order of magnitude, which improves model 
convergence. The scaling and outlier detection of the dataset as well as 
the subsequent predictive model training was carried out using the 
Scikit-learn library, which is available for the Python programming 
language. The predictions for the training set and test set are presented 
separately in different colors. The diagonal straight lines in Fig. 6 indi-
cate a perfect match between the predicted and measured values, while 
the dotted lines indicate ±10% deviation from a perfect match. 

Fig. 7 shows the third decision tree in the XGBoost model, which 
consists of 100 decision trees in total. The decision tree in Fig. 7 consists 
of a root node, 11 intermediate nodes, and 13 leaf nodes. Each inter-
mediate node in Fig. 7 splits at a certain value of the input features f3 

Fig. 5. Schematic illustration of gradient boosting model training.  

Fig. 6. Illustration of ML predictions of thermal conductivity of cement-based foam.  
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and f5, which denote porosity and hydration days, respectively. The 
intermediate nodes branch to the left-hand side with a blue arrow if the 
condition inside the node is satisfied or the feature value is missing in the 
current sample, and they branch to the right-hand side with a red arrow 
otherwise. Depending on the values of f3 and f5, a leaf value is reached 
for any sample. These leaf values contain positive or negative correc-
tions to the predicted thermal conductivity values in the first decision 
tree of the model. The sum of all decision tree leaf values constitutes the 
final prediction of the XGBoost model. 

The effect of outlier identification and removal on the predictive 

performance of ML models was investigated in Fig. 8 for all the models. 
In Fig. 8 the variation of the model performance for each model in terms 
of the R2 score on the test set has been plotted against the contamination 
variable of the isolation forest methodology. The isolation forest algo-
rithm was applied using the scikit-learn library of the Python pro-
gramming language. The contamination variable quantifies the 
threshold value for the classification of a data point as an outlier based 
on the average distance from the root node. An increased contamination 
value indicates a lower threshold value and a larger number of data 
samples being categorized as outliers. The ML models have been trained 
for 5 different contamination values in addition to the case without 
outlier detection and their performances have been measured on the test 
set. The test set consists of randomly selected samples and constitutes 
30% of the entire dataset. 

Fig. 8 shows that increasing the contamination value in general tends 
to improve the model accuracy. This tendency is more clearly visible in 
the LightGBM algorithm, whereas in the remaining algorithms, only a 
slight increase in the model accuracy can be observed as the contami-
nation value increased. The curves in Fig. 8 were generated by taking the 
average R2 scores on the test set corresponding to 10 different random 
states of the algorithms. Fig. 9 visualizes the outliers of the dataset 
corresponding to the contamination value of 0.1. 

Fig. 10 displays a comparison of the predicted and actual target 
values, and the percentage errors in the predictions. The close overlap 
between the predictions and target values can be observed in Fig. 10a 
where a vertical dashed red line separates the training and test sets. 
Similarly, in Fig. 10b the percentage errors are shown separately for the 
training and test sets, where it can be observed that the error percent-
ages remain within ±10% range for a large majority of the samples. 
Fig. 10c and Fig. 10d display the distribution of the error percentages of 

Fig. 7. Third decision tree in the XGBoost model.  

Fig. 8. Variation of the R2 score with respect to contamination.  
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Fig. 9. Illustration outliers in the dataset.  

Fig. 10. Error distributions on the training and test datasets.  
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the XGBoost model on the training and test sets. The vertical axes in 
Fig. 10c and Fig. 10d show the number of samples for which the per-
centage error is in a certain interval and the error percentage intervals 
are shown on the horizontal axes. The length of each vertical bar in the 
histogram plots represents the number of samples in a 0.5% error in-
terval. A comparison of Fig. 10c and Fig. 10d reveals that a greater 
number of samples are clustered in the ±5% error interval for the 
training set. 

The performances of the ML models are quantified using error met-
rics and duration of training the ML models which also includes the 10- 
fold cross-validation process, and the results are listed in Table 1. Ac-
cording to Table 1, the XGBoost model performed best on the test set in 
terms of the R2 score, whereas the LightGBM model performed best in 
terms of RMSE and MAE. It should be noted that all ML algorithms 
demonstrated high accuracy with R2 scores greater than 0.98 on the test 
set and 0.99 on the training set. In terms of computational speed, the 
best performance was obtained from the XGBoost model while CatBoost 
performed worse than the remaining models. The accuracies of the ML 
models are also visualized in Fig. 11 in a radar chart. 

The performance of the ML models has also been investigated in 
terms of the corresponding standard deviation and Pearson correlation 
coefficient with respect to the measured values. The results were visu-
alized in a Taylor diagram as depicted in Fig. 12. The Pearson correla-
tion is a measure of the linear correlation between data sequences. 
Fig. 12 shows that all ML predictions had Pearson correlation values 
greater than 0.99. A standard deviation of 0.05 W/(mK) can be observed 
for the original dataset and the predictions. 

The hyperparameters of the ML models were optimized using Cost- 
related Frugal Hyperparameter Optimization (CFO) and Economical 
Hyperparameter Optimization with Blended Search Strategy (Blend-
Search) algorithms, which are part of the FLAML package. The CFO 
algorithm is based on randomized direct search and applied in local 
search. On the other hand, BlendSearch is a global search technique and 
prevents the optimization process from being trapped in local minima. A 
list of the hyperparameters optimized with CFO and BlendSearch is 
given in Table 2. Fig. 13 shows the optimization steps of the LightGBM 
hyperparameters and the convergence of the R2 score. The details of the 
CFO and BlendSearch algorithms can be found in [38,41]. 

In order to further validate the ML models, additional data points 
were collected from the literature [7]. In Table 3, “nan” stands for 
non-numerical or missing feature values. It can be observed that the 
moisture percentage information is missing in this additional dataset. As 
shown in Fig. 7, the LightGBM, CatBoost and XGBoost models were 
capable of dealing with missing feature values, whereas the Random 
Forest regressor is not designed for making predictions on data points 
with missing values. It should be noted that, missing feature values may 
adversely affect the ML model performance. The performances of the ML 
models on the dataset of Table 3 were listed in Table 4 and the predicted 
thermal conductivity values were plotted against the true target values 
in Fig. 14. It can be observed that the XGBoost model was able to predict 
the thermal conductivity with an R2 score greater than 0.92. Although 
the XGBoost, CatBoost and LightGBM models were able the predict the 
thermal conductivity with relatively high accuracy, the overall model 
performances were adversely affected due to the presence of missing 
feature values. 

7. SHAP analysis of ML model results 

SHAP (SHapley Additive exPlanations) provides a methodology for 
visualizing the importance and impact of each input feature. The SHAP 
methodology assigns importance values to features in a machine 
learning model thereby quantifying the contribution of each feature to 
the model output and offering insights into the model’s decision-making 
process. The calculation of the SHAP values is represented in Eq. (2), 
where the SHAP value of the feature with index i is denoted with ϕi. F is 
the set of all input features and S is a subset of the feature set which does 
not contain the feature i. The ML model output is represented with the 
function f, and the impact of a feature is determined by the difference of 
the model outputs when that feature is included in the feature vector x 
and withheld from that vector [20,21,23,24]. 

Table 1 
Accuracy performances of the ML models.   

R2 RMSE MAE Duration [s]  

Train Test Train Test Train Test 

XGBoost 0.9914 0.9852 0.0047 0.0069 0.0033 0.0050 5.62 
CatBoost 0.9921 0.9851 0.0045 0.0066 0.0032 0.0048 31.5 
Random Forest 0.9918 0.9843 0.0046 0.0068 0.0033 0.0051 18.6 
LightGBM 0.9917 0.9822 0.0046 0.0064 0.0033 0.0047 16.5  

RMSE (*10-3)

MAE (*10-3)49

62

66

68

70

R2 (*10-4)

9855

9775

XGBoost

CatBoost

RF

515048

9835

LightGBM

47

9795

9815

64

Fig. 11. Radar chart of the prediction accuracies.  

Fig. 12. Taylor diagram of the ML predictions.  
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ϕi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1 )!
|F|!

[fS∪{i}
(
xS∪{i}

)
− fS(xS)] (2) 

A ranking of the input features with respect to their impacts on the 
model output is visualized in Fig. 15 where the average of the absolute 
SHAP values of a feature is used to quantify the importance of that 
feature. The average absolute SHAP values in Fig. 15 are obtained from 
the CatBoost model. According to Fig. 15 the cast density was the most 
impactful input feature, whereas the pozzolan percentage was the least 
impactful input feature. 

The impacts of the different input features on the model predictions 
can also be visualized using SHAP summary plots. Fig. 16 shows the 
SHAP summary plot obtained from the CatBoost model, where each data 
point is represented with a dot and this representation is repeated for 
every input feature. The color of these dots corresponds to the numerical 
value of an input feature in a particular data point, whereas the hori-
zontal distance of a point from the zero SHAP value line corresponds to 
the impact of the feature on the model output for that data point. The 

Table 2 
Hyperparameters of the machine learning models.  

Model Optimum hyperparameter values 

Random Forest max_features = 0.5632 max_leaf_nodes = 175  
n_estimators = 12 n_jobs = − 1  

XGBoost colsample_bylevel = 1.0 colsample_bytree = 1.0  
learning_rate = 0.3555 enable_categorical = False  
max_leaves = 17 grow_policy = ’lossguide’   
importance_type = None n_estimators = 59   
min_child_weight = 15.57 n_jobs = − 1  

LightGBM n_estimators = 55 learning_rate = 0.2042  
colsample_bytree = 0.5568 min_child_samples = 4  
num_leaves = 11 reg_alpha = 0.00097  
reg_lambda = 0.08185 log_max_bin = 10 

CatBoost early_stopping_rounds = 11 learning_rate = 0.1346  
n_estimators = 80   

Fig. 13. Optimization steps of the hyperparameters (LightGBM).  
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shades of red and blue correspond to high and low values of an input 
feature as shown in the color bar. A horizontal position at the right-hand 
side of the zero line indicates an increasing effect of the input feature on 
the model prediction, whereas a position to the left-hand side indicates a 
decreasing effect on the model prediction. According to Fig. 16, the cast 
density feature has the greatest magnitude of SHAP values and the 
greatest impact on the model predictions. 

In addition to the SHAP summary plots, the feature dependance plots 
give further insights into the relationships between the input features 
and their impacts on the predictive model output. Fig. 17 presents the 
feature dependence plots for each one of the input features. In these 
plots, in addition to the influence of an input feature on the model 
output, the color-coded values of another variable that is most depen-
dent on that feature are displayed. The feature dependence plots 
represent each data point with a dot. The colors of these dots are based 
on the values of the most dependent variables. For instance, Fig. 17a 
shows that porosity is the variable most dependent on the cast density. 
Fig. 17a also shows that, for cast density values of 600kg/m3 and less, 
the cast density has a negative SHAP value and a decreasing effect on the 
model output. 

Clearly, the cast density values are clustered at three different levels. 
Similarly, the percentage of pozzolan in the mixtures is clustered at the 
0%, 10% and 20% levels. It can be observed in Fig. 17b that the per-
centage increase of the pozzolan had mostly a decreasing effect on the 
model output. Furthermore, the moisture percentage was the most 
dependent variable on the pozzolan percentage. However, there was no 
clear relationship between the increase of moisture and the impact of 
pozzolan percentage. At 20% pozzolan level this feature had mostly a 
decreasing effect on the model output, whereas removing the pozzolan 
from the mixture (0%) increased the model output. 

Fig. 17c and Fig. 17d show the dependence plots of porosity and 
moisture percentage, respectively. It can be observed that increasing the 
moisture tended to increase the SHAP values. At moisture percentages 
less than 6% the SHAP values of the moisture percentage were less than 
zero, which indicates a decreasing effect on the model output. On the 
other hand, at moisture levels greater than 6%, the SHAP values 
increased with the moisture content. According to Fig. 17c, the effect of 
porosity on the model outputs was opposite to that of moisture. At 
porosity levels less than 70%, the SHAP values of porosity were greater 
than zero, whereas at greater than 70% porosity levels, the SHAP values 
were less than zero and tended to decrease with increasing porosity. 

The ICE plots in Fig. 18 illustrate how thermal conductivity varied 
depending on the cast density, percentage of pozzolan, porosity, and 
moisture percentage. In these ICE plots, each data point was represented 
with a different curve [12]. For instance, in the ICE plot of cast density, 
for each data point the value of cast density varied between its upper and 
lower bounds, while every other input feature was kept constant. The 
horizontal axes of the ICE plots in Fig. 18 also display histogram dis-
tribution of the input features in light gray color. From these histograms 
it is visible that the cast density values were clustered around 400, 600, 
and 800 kg/m3, while the pozzolan percentages were clustered around 
0%, 10%, and 20%. Due to the clustering of values around 3 distinct 
levels, the ICE plots of the cast density and the pozzolan percentage had 
stepwise variations. 

The thermal conductivity as a function of cast density, denoted with f 
(x)|cast density, increased with respect to the cast density in all data 
samples. On the other hand, thermal conductivity as a function of the 
pozzolan percentage, denoted as f(x)|% of pozzolan, decreased with 
respect to the pozzolan percentage in all data samples. These variations 
of the thermal conductivity are also supported by the research output of 
Mydin [31], Chinnu et al. [11] and Maglad et al. [22]. In the ICE plots, 
the average prediction of all data points was plotted with a thick blue 
curve. A more irregular variation of the thermal conductivity can be 
observed with respect to porosity and moisture percentage in Figs. 18c 
and 18d. On average, a decrease with respect to porosity can be 
observed, whereas the moisture percentage had an increasing effect on 
the thermal conductivity. 

8. Conclusions 

Cement-based foam has several advantages compared to conven-
tional concrete, including better thermal and sound insulation, fire 
resistance, eco-friendliness, and lighter weight. The present study har-
vests experimental research carried out for determining the thermal 
conductivity of cement-based foam as a function of its cast density, 
porosity, pozzolan percentage, moisture content, and hydration days. 
The results of these experiments were used for developing predictive 
machine learning models of thermal conductivity. This paper presents 
the application of the isolation forest methodology in data outlier 
identification and shows that this experimental data further processing 
allowed to attain superior model predictive accuracy. State-of-the-art 
ensemble machine learning algorithms were deployed to predict the 
thermal conductivity of foamed concrete. The main conclusions of this 
study are drawn below. 

Table 3 
Additional data points for model validation [7].  

Cast 
density 
(kg/ 
m3) 

Pozzolan 
(%) 

Porosity 
(%) 

Moisture 
(%) 

Hydration 
days 

Thermal 
conductivity 
(W/mK) 

800 0 54 nan 35 0.234 
800 0 54 nan 35 0.231 
800 0 54 nan 35 0.263 
600 0 66 nan 35 0.175 
600 0 66 nan 35 0.191 
600 0 66 nan 35 0.172 
400 0 80 nan 35 0.104 
400 0 80 nan 35 0.122 
400 0 80 nan 35 0.13 
800 0.2 68 nan 35 0.232 
800 0.2 68 nan 35 0.243 
800 0.2 68 nan 35 0.25 
600 0.2 74 nan 35 0.17 
600 0.2 75 nan 35 0.167 
600 0.2 74 nan 35 0.17 
400 0.2 82 nan 35 0.108 
400 0.2 82 nan 35 0.108 
400 0.2 80 nan 35 0.102 
800 0.2 59 nan 35 0.24 
800 0.2 59 nan 35 0.242 
800 0.2 59 nan 35 0.249 
600 0.2 67 nan 35 0.162 
600 0.2 68 nan 35 0.154 
600 0.2 68 nan 35 0.153 
400 0.2 75 nan 35 0.104 
400 0.2 75 nan 35 0.11 
400 0.2 74 nan 35 0.105 
800 0.2 68 nan 35 0.239 
800 0.2 66 nan 35 0.238 
800 0.2 68 nan 35 0.237 
600 0.2 74 nan 35 0.179 
600 0.2 73 nan 35 0.183 
600 0.2 73 nan 35 0.19 
400 0.2 82 nan 35 0.116 
400 0.2 82 nan 35 0.117 
400 0.2 82 nan 35 0.117  

Table 4 
ML model performances on the validation dataset.  

Algorithm RMSE R2 MAE 

XGBoost 0.0146 0.9257 0.0120 
LightGBM 0.0195 0.8683 0.0171 
CatBoost 0.0212 0.8439 0.0166  
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• The isolation forest algorithm was shown to effectively eliminate 
outliers in the dataset, thereby considerably optimizing the perfor-
mance of the predictive machine learning models.  

• Cost-related Frugal Hyperparameter Optimization (CFO), and 
Economical Hyperparameter Optimization with Blended Search 
Strategy (BlendSearch) algorithms have been demonstrated as 
effective methodologies for hyperparameter optimization of 
ensemble models.  

• The XGBoost model performed best on the test dataset in terms of the 
R2 score, whereas the LightGBM model scored best in terms of the 
mean absolute error and root mean squared error metrics. However, 
it should be noted that all the employed algorithms predicted the 
thermal conductivity with a coefficient of determination greater than 
0.98 on the test dataset. 

Fig. 14. ML predictions on the validation dataset.  

Fig. 15. Feature importance using average absolute SHAP values.  

Fig. 16. SHAP summary plot of the CatBoost model.  
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• Similar performances could be obtained from all of the ensemble 
models in terms of RMSE and MAE, with an average RMSE of 
0.0067 W/(mK) and an average MAE of 0.0049 W/(mK). The model 
performances have been visually summarized in the form of a radar 
chart.  

• The linear correlation between the ensemble model predictions and 
the target values have been visualized in terms of the Pearson cor-
relation coefficient in a Taylor diagram. All predictive models had 
Pearson correlation values greater than 0.99 and were closely posi-
tioned on the Taylor diagram.  

• The outcome of the SHAP analysis showed that the cast density had 
the greatest influence on the ML model predictions, followed by 
porosity. On the other hand, the percentage of pozzolan in the 
mixture had the least effect on the model output.  

• The relationship between different input features and the thermal 
conductivity was further visualized using ICE plots, where thermal 
conductivity increased with increasing cast density and moisture. 
Conversely, conductivity decreased as porosity and the percentage of 
pozzolan increased. 

Since the present study only deals with densities lower than 800 kg/ 
m3, there is need for future research in this area for the development of 
models for cement-based foam with densities greater than 1000 kg/m3 

and possibly incorporating nanoparticle addition. While the models 
delivered highly accurate results, they are limited by the input feature 

ranges and distributions that were tested in the experimental program. 
More advanced predictive models can be developed in the future when 
more pertinent data becomes available from further experimental 
research. The results obtained from the verified numerical models can be 
used to further enhance the dataset used for machine learning model 
training. Since the quality of a data-driven model is determined by the 
size and quality of the dataset on which it has been trained, it is 
important to enhance the size and variable ranges of the dataset used in 
predictive model training to attain broader applicability of the model. 
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