<  Retour au portail Polytechnique Montréal

Coupling the COST reference plasma jet to a microfluidic device: a computational study

Julien Bissonnette-Dulude, Pepijn Heirman, Sylvain Coulombe, Annemie Bogaerts, Thomas Gervais et Stephan Reuter

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.

Mots clés

non-thermal plasma; microfluidic; plasma-liquid interactions; modelling

Renseignements supplémentaires: Groupe de recherche: Plasma Physics and Spectroscopy Laboratory ;
Groupe de recherche: Microfluidic for Oncology Laboratory
Sujet(s): 3100 Physique > 3100 Physique
3100 Physique > 3107 Physique des plasmas
Département: Département de génie physique
Centre de recherche: Autre
Organismes subventionnaires: NSERC / CRSNG, Fond de recherche du Québec, McGill University - Gerald Hatch Faculty Fellowship, TransMedTech Institute, Apogee Canada First Research Excellence Fund - Fund for Scientific Research Flanders
Numéro de subvention: RGPIN-06838, RGPIN-06820, G033020N, 1100421N
URL de PolyPublie: https://publications.polymtl.ca/57273/
Titre de la revue: Plasma Sources Science and Technology (vol. 33, no 1)
Maison d'édition: IOP Publishing
DOI: 10.1088/1361-6595/ad1421
URL officielle: https://doi.org/10.1088/1361-6595/ad1421
Date du dépôt: 29 janv. 2024 14:38
Dernière modification: 01 oct. 2024 08:26
Citer en APA 7: Bissonnette-Dulude, J., Heirman, P., Coulombe, S., Bogaerts, A., Gervais, T., & Reuter, S. (2024). Coupling the COST reference plasma jet to a microfluidic device: a computational study. Plasma Sources Science and Technology, 33(1), 015001 (13 pages). https://doi.org/10.1088/1361-6595/ad1421

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document