<  Back to the Polytechnique Montréal portal

Analytically tractable heteroscedastic uncertainty quantification in Bayesian neural networks for regression tasks

Bhargob Deka, Luong Ha Nguyen and James Alexandre Goulet

Article (2023)

An external link is available for this item
Department: Department of Civil, Geological and Mining Engineering
PolyPublie URL: https://publications.polymtl.ca/57161/
Journal Title: Neurocomputing
Publisher: Elsevier
DOI: 10.1016/j.neucom.2023.127183
Official URL: https://doi.org/10.1016/j.neucom.2023.127183
Date Deposited: 29 Jan 2024 14:38
Last Modified: 25 Sep 2024 16:49
Cite in APA 7: Deka, B., Nguyen, L. H., & Goulet, J. A. (2023). Analytically tractable heteroscedastic uncertainty quantification in Bayesian neural networks for regression tasks. Neurocomputing, 127183 (20 pages). https://doi.org/10.1016/j.neucom.2023.127183

Statistics

Dimensions

Repository Staff Only

View Item View Item