Alban Morali, Arijit Mandal, Maksim A. Skorobogatiy et Sampada Bodkhe
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (1MB) |
Abstract
Polyvinylidene fluoride (PVDF) is known for its piezoelectric properties. This material has different crystalline phases, alpha (α), beta (β) and gamma (γ), where the β-phase, in particular, is related to the piezoelectric behavior of PVDF. While the transformation from the α-phase to β-phase in PVDF is well-documented and widely studied, the transformation from γ- to β-phase has not yet been fully explored. However, when PVDF is produced by certain solution-based methods it can adopt its γ-form, which is not as piezoelectric as the β-phase. Hence, this study aims to bridge this gap by investigating the transformation from γ- to β-phase in PVDF nanocomposites films obtained from solution-based techniques. Our PVDF nanocomposite is made by solvent evaporation-assisted 3D printing of PVDF's nanocomposite with barium-titanate nanoparticles (BTO). To achieve the γ- to β-phase transformation, we first highlight the importance of annealing in the successful poling of PVDF samples. We then perform an in-depth analysis of the α-, β- and γ-crystallographic phases of PVDF-BTO using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). We observed that after annealing but before poling, the PVDF-BTO nanocomposite contains 76% of β + γ phases, the majority of which is the γ-phase. Poling of these samples resulted in the combination of the β + γ phases reaching 93% with the appearance of 40% of absolute fraction of the β-phase. We then demonstrated that the fraction of β-phase in the nanocomposite – as indicated by the 1275 cm−1 peak in PVDF's FTIR spectra – is not uniform on the surface area of the film. Additionally, the value of the absolute β-phase content also depends on the poling field's direction. Our work reveals that while considering PVDF's piezoelectric behavior, it is critical to be aware of these nuances and this article offers essential insights on how to address them. Overall, this study provides a step-by-step guideline to enhance the piezoelectricity of PVDF-based nanocomposites for sensing applications.
Département: |
Département de génie mécanique Département de génie physique |
---|---|
Centre de recherche: | CREPEC - Centre de recherche sur les systèmes polymères et composites à haute performance |
Organismes subventionnaires: | Mitacs, CRSNG/NSERC |
Numéro de subvention: | Globalink research internship program, Discovery Grants program |
URL de PolyPublie: | https://publications.polymtl.ca/56754/ |
Titre de la revue: | RSC Advances (vol. 13, no 44) |
Maison d'édition: | Royal Society of Chemistry |
DOI: | 10.1039/d3ra05068h |
URL officielle: | https://doi.org/10.1039/d3ra05068h |
Date du dépôt: | 23 janv. 2024 13:25 |
Dernière modification: | 01 oct. 2024 15:29 |
Citer en APA 7: | Morali, A., Mandal, A., Skorobogatiy, M. A., & Bodkhe, S. (2023). Unleashing the piezoelectric potential of PVDF: a study on phase transformation from gamma (γ) to beta (β) phase through thermal contact poling. RSC Advances, 13(44), 31234-31242. https://doi.org/10.1039/d3ra05068h |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions