Harry Seely, Nicholas C. Coops, Joanne C. White, David Montwé, Lukas Winiwarter et Ahmed Ragab
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (10MB) |
Abstract
Airborne laser scanning (ALS) data has been widely used for total aboveground tree biomass (AGB) modelling, however, there is less research focusing on estimating specific tree biomass components (wood, branches, bark, and foliage). Knowledge about these biomass components is essential for carbon accounting, understanding forest nutrient cycling, and other applications. In this study, we compare additive AGB estimation (sum of estimated components) with direct AGB estimation using deep neural network (DNN) and random forest (RF) models. We utilise two point cloud DNNs: point-based Dynamic Graph Convolutional Neural Network (DGCNN) and Octree-based Convolutional Neural Network (OCNN). DNN and RF models were trained using a dataset comprised of 2336 sample plots from a mixed temperate forest in New Brunswick, Canada. Results indicate that additive AGB models perform similarly to direct models in terms of coefficient of determination (R2) and root-mean square error (RMSE), and reduced the mean absolute percentage error (MAPE) by 22% on average. Compared to RF, the DNNs provided a small improvement in performance, with OCNN explaining 5% more variation in the data (R2 = 0.76) and reducing MAPE by 20% on average. Overall, this study showcases the effectiveness of additive tree AGB models and highlights the potential of DNNs for enhanced AGB estimation. To further improve DNN performance, we recommend using larger training datasets, implementing hyperparameter optimization, and incorporating additional data such as multispectral imagery.
Mots clés
Deep neural network (DNN); Airborne laser scanning (ALS); Tree component biomass ; DGCNN; Octree-CNN (OCNN); Model comparison
Renseignements supplémentaires: |
The following is the Supplementary data to this article: https://ars.els-cdn.com/content/image/1-s2.0-S2666017223000354-mmc1.docx ; Lidar is available at GeoNB website. CLI plot data is available upon request from the Gov. of NB. Code at https://github.com/harryseely/Biomass-DL |
---|---|
Sujet(s): | 1600 Génie industriel > 1600 Génie industriel |
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | Natural Sciences and Engineering Research Council of Canada, National Research Council Canada |
Numéro de subvention: | RGPIN-2018-03851, DHGA-119-1 |
URL de PolyPublie: | https://publications.polymtl.ca/56713/ |
Titre de la revue: | Science of Remote Sensing (vol. 8) |
Maison d'édition: | Elsevier BV |
DOI: | 10.1016/j.srs.2023.100110 |
URL officielle: | https://doi.org/10.1016/j.srs.2023.100110 |
Date du dépôt: | 27 nov. 2023 16:18 |
Dernière modification: | 29 sept. 2024 19:51 |
Citer en APA 7: | Seely, H., Coops, N. C., White, J. C., Montwé, D., Winiwarter, L., & Ragab, A. (2023). Modelling tree biomass using direct and additive methods with point cloud deep learning in a temperate mixed forest. Science of Remote Sensing, 8, 100110 (17 pages). https://doi.org/10.1016/j.srs.2023.100110 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions