Martin Šípka, Michal Pavelka, Oğul Esen et Miroslav Grmela
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
In this paper, we present neural networks learning mechanical systems that are both symplectic (for instance particle mechanics) and non-symplectic (for instance rotating rigid body). Mechanical systems have Hamiltonian evolution, which consists of two building blocks: a Poisson bracket and an energy functional. We feed a set of snapshots of a Hamiltonian system to our neural network models which then find both the two building blocks. In particular, the models distinguish between symplectic systems (with non-degenerate Poisson brackets) and non-symplectic systems (degenerate brackets). In contrast with earlier works, our approach does not assume any further a priori information about the dynamics except its Hamiltonianity, and it returns Poisson brackets that satisfy Jacobi identity. Finally, the models indicate whether a system of equations is Hamiltonian or not.
Mots clés
machine learning; Hamiltonian mechanics; non-symplectic; neural networks; Poisson
Département: | Département de génie chimique |
---|---|
Organismes subventionnaires: | Grantová Agentura České Republiky |
Numéro de subvention: | 23-05736S |
URL de PolyPublie: | https://publications.polymtl.ca/56705/ |
Titre de la revue: | Journal of Physics A (vol. 56, no 49) |
Maison d'édition: | Institute of Physics |
DOI: | 10.1088/1751-8121/ad0803 |
URL officielle: | https://doi.org/10.1088/1751-8121/ad0803 |
Date du dépôt: | 15 déc. 2023 15:39 |
Dernière modification: | 30 sept. 2024 11:21 |
Citer en APA 7: | Šípka, M., Pavelka, M., Esen, O., & Grmela, M. (2023). Direct Poisson neural networks: learning non-symplectic mechanical systems. Journal of Physics A, 56(49), 495201 (25 pages). https://doi.org/10.1088/1751-8121/ad0803 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions