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Abstract
In this paper, we present neural networks learning mechanical systems that are
both symplectic (for instance particle mechanics) and non-symplectic (for
instance rotating rigid body). Mechanical systems have Hamiltonian evolu-
tion, which consists of two building blocks: a Poisson bracket and an energy
functional. We feed a set of snapshots of a Hamiltonian system to our neural
network models which then find both the two building blocks. In particular, the
models distinguish between symplectic systems (with non-degenerate Poisson
brackets) and non-symplectic systems (degenerate brackets). In contrast with
earlier works, our approach does not assume any further a priori information
about the dynamics except its Hamiltonianity, and it returns Poisson brackets
that satisfy Jacobi identity. Finally, the models indicate whether a system of
equations is Hamiltonian or not.

Keywords: machine learning, Hamiltonian mechanics, non-symplectic,
neural networks, Poisson
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1. Introduction

The estimation of unknown parameters in physics and engineering is a standard step in many
well-established methods and workflows. One usually starts with a model—a set of assump-
tions and equations that are considered given and then, based on the available data, estimates
the exact form of the evolution equations for the system of interest. As an example, we can
consider a situation where we need to estimate the mass of a star far away based on its interac-
tion with light [1], or when the moments of inertia of an asteroid are inferred from its rotations
[2]. The assumptions can be of varying complexity and the method for parameter estimation
should be therefore adequately chosen.

Techniques for machine learning of dynamical systems have sparked significant interest
in recent years. With the rise of neural network-related advances, several methods have been
developed for capturing the behavior of dynamical systems, each with its advantages and draw-
backs. A symbolic approach (for instance [3]) allows us to learn precise symbolic form of
equations from the predefined set of allowed operations. This can be often the most efficient
approach that frequently leads to an exact match between the learned and target system, but
the class of captured equations is by definition limited by the algebraic operations we consider
as candidates.

Alternatively, one can learn directly the equations of motion

ẋ= f(x,θ) (1)

by learning f parameterized by weights θ. The function can be represented by any function
approximator, in many cases by a neural network. Although this approach is very general, it
does not incorporate any known physics into our procedure. There is no concept of energy of
the system, no quantities are implicitly conserved, and the method thus might produce unphys-
ical predictions. A remedy is the concept of physics-informedmachine learning that constrains
the neural network models so that they obey some required laws of physics [4, 5]. In particular,
models of mechanical systems, which can be described by Hamiltonian mechanics, preserve
several physical quantities like energy or angular momentum, as well as geometric quant-
ities (for instance the symplectic two-form) that ensure the self-consistency of the systems.
A neural-network model learning a Hamiltonian system from its trajectories that is compat-
ible with the underlying geometry without any a priori knowledge about the system has been
missing, to the best of our knowledge, and it is the main purpose of the current manuscript
to introduce it. Moreover, we present several models that vary in how strictly they reproduce
the underlying geometry and the degree to which these models learn a system can be used to
estimate whether the system is Hamiltonian or not.

In [6], Cranmer et al demonstrate that for more complex, namely multiparticle systems, it is
actually beneficial to merge symbolic and neural network parameterized fitting. The construc-
tion of a reduced representation subsequently fit by a symbolic expression yields interesting
results in Hamiltonian mechanics and cosmology. This approach calls for tailored neural net-
work system representations that could be easily learned and are accurate, representing the
symmetries and constraints of the investigated system.

Geometrization of a dynamical system. A dynamical system is described by a differential
equation, in particular, a mechanical system obeys Hamiltonian evolution equations. These
equations are of geometric origin that is invariant with respect to changes of coordinates
and which is preserved during the motion of the system. The geometry of Hamiltonian sys-
tems goes back to Lie and Poincaré [7, 8]. Modern approaches extend to infinite-dimensional
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systems and provide foundations for many parts of nowadays physics [9–12]. Formulating
a mechanical system geometrically typically means finding a bracket algebra (such as sym-
plectic, Poisson, Jacobi, Leibniz, etc) and a generating function (such as Hamiltonian, energy,
or entropy). The bracket is generally required to satisfy some algebraic conditions (Jacobi
identity, Leibniz identity, etc). However, there is no general algorithmic way to obtain the
Hamiltonian formulation (even if it exists) of a given system by means of analytical calcula-
tions. So such an analysis is proper for machine learning.

Apart from Hamiltonian mechanics, one can also include dissipation [13–15] or extend the
learning of Hamiltonian systems to control problems [16]. Such an approach then, with the
suitable choice of integrator ensures the conservation of physically important quantities, such
as energy, momentum or angular momentum.

A reversible system is a candidate for being a Hamiltonian system. For a reversible system,
the beginning point could be to search for a symplectic manifold and a Hamiltonian func-
tion. Learning the symplectic character (if it exists) of a physical system (including particles
in potential fields, pendulums of various complexities) can be done utilizing neural networks,
see, for example, [17, 18]. Another possibility is to learn the dynamics by minimizing the
action, which leads to Lagrangian neural networks [19], and the dynamics is then symplectic
as well. The symplectic geometry exists only in even-dimensional models and due to the non-
degeneracy criteria, it is very rigid. A generalization of symplectic geometry is Poisson geo-
metry where the non-degeneracy requirement is relaxed [20, 21]. In Poisson geometry, there
exists a Poisson bracket (defining an algebra on the space of functions) satisfying the Leibniz
and the Jacobi identities. This generalization permits (Hamiltonian) analysis in odd dimen-
sions. The degenerate character of Poisson geometry brings some advantages for the investig-
ation of (total, or even super) integrability of the dynamics. Poisson non-symplectic dynamics
can be generated also by variation of action, but only by adding constraints, which is also a
way to learn mechanics by neural networks [22].

The point of this paper is to better learn Hamiltonian mechanics. We build neural net-
works that encode the building blocks of Hamiltonian dynamics admitting Poisson geometry.
According to the Darboux–Weinstein theorem [23] for a Poisson manifold, there are canon-
ical coordinates which make the Poisson bivector (determining the bracket) constant. This
formulation has also geometric implications, since it determines the symplectic foliation of
the Poisson manifold (see more details in the main body of this paper). Recently, Poisson
neural networks (abbreviated as PNNs) were proposed to learn Hamiltonian systems [24] by
transforming the system in the Darboux–Weinstein coordinates. But, for many physical sys-
tems, the Poisson bracket is far from being in the canonical coordinates, and the dimension of
the symplectic part of the Darboux–Weinstein Poisson bivector may be a priori unknown. For
n-dimensional physical models, Jacobi identity, which ensures consistency of the underlying
Poisson bivector, is a system of PDEs. To determine the Poisson structure, one needs to solve
this system analytically, which is usually difficult, or enforce its validity while learning the
Poisson bivector.

The goal of this work. The novel result of this paper is what we call a direct PNN (abbreviated
as DPNN) which learns the Poisson structure without assuming any particular form of the
Poisson structure such as Darboux–Weinstein coordinates. Instead, DPNN learns directly in
the coordinate system in which the data are provided. There are several advantages of DPNN:
(i) We do not need to know a priori the degeneracy level of the Poisson structure (or in other
terms the dimensions of the symplectic foliations of the Poisson manifold) (ii) it is easier to
learn the Hamiltonian (energy), and (iii) Jacobi identity is satisfied on the data, not only in a
representation accessible only through another neural network (an invertible neural network
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in [24]). DPNN learns Poisson systems by identifying directly the Poisson bivector and the
Hamiltonian as functions of the state variables.

We actually provide three flavors of DPNNs. The least-informed flavor directly learns the
Hamiltonian function and the Poisson bivector, assuming its skew-symmetry but not the Jacobi
identity. Another flavor adds squares of Jacobi identity to the loss function and thus softly
imposes its validity. The most geometry-informed flavor automatically satisfies Jacobi iden-
tity by building the Poisson bivector as a general solution to Jacobi identity in three dimen-
sions (3D). While the most geometry-informed version is typically most successful in learning
Hamiltonian systems, it is restricted to 3D systems, where the general solution of Jacobi iden-
tity is available. The second flavor is typically a bit less precise, and the least-informed flavor
is usually the least precise, albeit still being able to learn Hamiltonian systems to a good degree
of precision.

Interestingly, when we try to learn a non-Hamiltonian model by these three flavors of
DPNNs, the order of precision is reversed and the least-informed flavor becomes most precise.
The order of precision of the DPNNs flavors thus indicates whether a system of equations is
Hamiltonian or not.

Section 2 recalls Poisson dynamics, in particular symplectic dynamics, rigid body (RB)
mechanics, Shivamoggi equations, and evolution of heavy top (HT). Section 3 contains an
introduction to neural networks to facilitate reading of this manuscript. It also introduces
DPNNs and illustrates their use on learning Hamiltonian systems. Finally, section 4 shows
DPNNs applied on a non-Hamiltonian system (dissipative RB).

2. Hamiltonian dynamics on Poisson geometry

2.1. General formulation

A Poisson bracket on a manifoldM (physically corresponding to the state space, for instance
position and momentum of the body) is a skew-symmetric bilinear algebra on the spaceF(M)
of smooth functions on M given by

{•,•} : F (M)×F (M)→F (M) . (2)

Poisson brackets satisfy the Leibniz rule

{F,HG}= {F,H}G+H{F,G} , (3)

and the Jacobi identity,

{F,{H,G}}+ {H,{G,F}}+ {G,{F,H}}= 0, (4)

for arbitrary functions F, H and G, [12, 20, 21]. A manifold equipped with a Poisson bracket
is called a Poisson manifold and is denoted by a two-tuple (M,{•,•}). A function C is called
a Casimir function if it commutes with all other functions that is {F,C}= 0 for all F. For
instance, the magnitude of the angular momentum of an RB is a Casimir function.

Hamiltonian dynamics. Hamiltonian dynamics can be seen as evolution on a Poisson man-
ifold. For a Hamiltonian function (physically energy) H on M, the Hamiltonian vector field
and Hamilton’s equation are

XH (F) := {F,H} , ẋ= XH (x) = {x,H} , (5)

4



J. Phys. A: Math. Theor. 56 (2023) 495201 M Šípka et al

respectively, where x ∈M is a parametrization of manifold M. The algebraic properties of
the Poisson bracket have some physical consequences. Skew-symmetry implies energy con-
servation,

Ḣ= {H,H}= 0, (6)

while the Leibniz rule ensures that the dynamics does not depend on biasing the energy by
a constant. Referring to a Poisson bracket, one may determine the Poisson bivector field
according to

L(dF,dH) := {F,H} . (7)

This identification makes it possible to define a Poisson manifold by a tuple (M,L) consisting
of a manifold and a Poisson bivector. In this notation, the Jacobi identity can be rewritten as
LXHL= 0, that is the Lie derivative of the Poisson bivector with respect to the Hamiltonian
vector field is zero [25]. In other words, the Jacobi identity expresses the self-consistency of
the Hamiltonian dynamics in the sense that both the building blocks (Hamiltonian function
and the bivector field) are constant along the evolution.

Assuming a local coordinate system x= (xi) on M, Poisson bivector determines Poisson
matrix L= [Lkl] which enables us to write [26]

L= Lkl
∂

∂xk
∧ ∂

∂xl
. (8)

In this realization, the Poisson bracket and Hamilton’s equations are written as

{F,H}= Lkl
∂F
∂xk

∂H
∂xl

, ẋk = Lkl
∂H
∂xl

, (9)

respectively. Here, we have assumed summation over the repeated indices. Further, the Jacobi
identity (4) turns out to be the following system of partial differential equations

Jijl = Lkl
∂Lij

∂xk
+Lki

∂Ljl

∂xk
+Lkj

∂Lli

∂xk
= 0. (10)

The left-hand side of this equation is called Jacobiator, and in the case of Hamiltonian systems,
it is equal to zero. Jacobi identity (10) is a system of differential equations consisting of PDEs.
In 3D systems (for instance the RB, that has three degrees of freedom), Jacobi identity (10)
is a single PDE whose general solution is known [27]. In four-dimensional (4D) systems (for
instance a particle moving in a plane, or the Shivamoggi equations), Jacobi identity (10) con-
sists of four PDEs, and there are some partial results, but for an arbitrary n, according to our
knowledge, there is no general solution yet. We shall focus on 3D, 4D, and six-dimensional
(6D) (HT or particle in a volume) cases in the upcoming subsections.

Symplectic manifolds. If there is no non-constant Casimir function for a Poisson manifold,
then it is also a symplectic manifold. Although we can see symplectic manifolds as examples
of Poisson manifolds, it is possible to define a symplectic manifold in a direct way without
referring to a Poisson manifold. A manifold M is called symplectic if it is equipped with
a closed non-degenerate two-form (called a symplectic two-form) Ω. A two-form is called
non-degenerate when

Ω(X,Y) = 0, ∀X ∈ X(M) (11)

5
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implies Y = 0. A two-form is closed when being in the kernel of de Rham exterior derivative,
dΩ= 0. A Hamiltonian vector field XH on a symplectic manifold (M,Ω) is defined as

ιXHΩ= dH, (12)

where ι is the contraction operator (more precisely the interior derivative) [25]. Referring to a
symplectic manifold one can define a Poisson bracket

{F,H} := Ω(XF,XH) , (13)

where the Hamiltonian vector fields are defined through equation (12). The closedness of the
symplectic two-form Ω guarantees the Jacobi identity (4). The non-degeneracy condition of
Ω puts an extra condition to the bracket (13) that the Casimir functions are only the constant
functions, in contrast with Poisson manifolds, which may have also non-constant Casimirs.
The Darboux–Weinstein coordinates show more explicitly the relationship between Poisson
and symplectic manifolds in a local picture.

Darboux–Weinstein coordinates.We start with n= (2m+ k)-dimensional Poisson manifold
M equipped with Poisson bivector L. Near every point of the Poisson manifold, the Darboux–
Weinstein coordinates (xi) = (qa,pb,uα) (here a runs from 1 tom, and α runs from 1 to k) give
a local form of the Poisson bivector

L=
∂

∂qa
∧ ∂

∂pa
+

1
2
λαβ ∂

∂uα
∧ ∂

∂uβ
(14)

with the coefficient functions λαβ equal zero at the origin. If k= 0 in the local formula (14),
then there remains only the first term on the right-hand side and the Poisson manifold turns
out to be a 2m-dimensional symplectic manifold. Newtonian mechanics, for instance, fits this
kind of realization. On the other hand, ifm= 0 in (14), then there remains only the second term
which is a full-degenerate Poisson bivector. A large class of Poisson manifolds is of this form,
namely Lie–Poisson structure on the dual of a Lie algebra including RB dynamics, Vlasov
dynamics, etc. In general, Poisson bivectors have both the symplectic part as well as the fully
degenerate part, for instance, the HT dynamics in section 2.4.

When the Poisson bivector is non-degenerate, it generates a symplectic Poisson bracket,
and it commutes with the canonical Poisson bivector

Lcan =

(
0 I
−I 0

)
(15)

in the sense that

L ·Lcan −Lcan ·L= 0. (16)

This compatibility condition is employed later in section 3 to measure the error of DPNNs
when learning symplectic Poisson bivectors.
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2.2. 3D Hamiltonian dynamics

In this subsection, we focus on 3D Poisson manifolds, following [28–30]. One of the important
observations in 3D is the isomorphism between the space of vectors and the space of skew-
symmetric matrices given by

L=

 0 −Jz Jy
Jz 0 −Jx
−Jy Jx 0

↔ J= (Jx,Jy,Jz) . (17)

This isomorphism lets us write Jacobi identity (10) as a single scalar equation

J · (∇× J) = 0, (18)

see, for example, [29, 31–33]. The general solution of Jacobi identity (18) is

J=
1
ϕ
∇C (19)

for arbitrary functions ϕ and C, where C is a Casimir function. Hamilton’s equation then takes
the particular form

ẋ= J×∇H=
1
ϕ
∇C×∇H. (20)

Note that by changing the roles of the Hamiltonian function H and the Casimir C one can
arrive at another Hamiltonian structure for the same system. In this case, the Poisson vector
is defined as J=−(1/ϕ)∇H and the Hamiltonian function is C. This is an example of a bi-
Hamiltonian system, that manifests integrability [27, 34–36]. A bi-Hamiltonian system admits
two different but compatible Hamilton formulations. In 3D, two Poisson vectors, say J1 and
J2 are compatible if

J1 · (∇× J2) = J2 · (∇× J1) . (21)

Indeed, if a 3D Hamiltonian system admits two Poisson bivectors (represented by two vector
J1 and J2) and two Hamiltonians H1 and H2,

ẋ= J1 ×∇H1 = J2 ×∇H2, (22)

then both the Hamiltonians are conserved and thus H2 serves as a Casimir function in the
formulation with J1 whileH1 being a Casimir for J2. Compatibility condition (21) then follows
from the solution of Jacobi identity (19). This compatibility condition will be used later in
section 3 to measure the error of learning Poisson bivectors in 3D by DPNNs.

RB dynamics. Let us consider an example of a 3D Hamiltonian system, a freely rotating RB.
The state variableM ∈M is the angular momentum in the frame of reference co-rotating with
the RB. The Poisson structure is

{F,H}(RB)
(M) =−M · ∂F

∂M
× ∂H

∂M
, (23)

7
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see [37]. Poisson bracket (23) is degenerate because it preserves any function of the magnitude
of M. The Hamiltonian function is the energy

H=
1
2

(
M2
x

Ix
+
M2
y

Iy
+
M2
z

Iz

)
, (24)

where Ix, Iy and Iz are moments of inertia of the body. In this case, Hamilton’s equation

Ṁ=M× ∂H
∂M

(25)

gives Euler’s RB equation [38].

2.3. 4D Hamiltonian dynamics

In 4D, we consider the following local coordinates (u,x,y,z) = (u,x). A skew-symmetric mat-
rix L can be identified with a couple of vectors U= (U1,U2,U3) and V= (V1,V2,V3) as

L=


0 −U1 −U2 −U3

U1 0 −V3 V2

U2 V3 0 −V1

U3 −V2 V1 0

 . (26)

After this identification, Jacobi identity (10) turns out to be a system of PDEs consisting of
four equations [39]

∂u (U ·V) = V · (∂uU−∇×V) , (27a)

∇(U ·V) = V(∇·U)−U× (∂uU−∇×V) . (27b)

Note that L is degenerate (its determinant being zero) if and only ifU ·V= 0. So, for degen-
erate Poisson matrices, the Jacobi identity is satisfied if

∇·U= 0, ∂uU−∇×V= 0. (28)

Superintegrability. Assume that a given dynamics admits two time-independent first integ-
rals, say H1 and H2. Then, when vectors U and V have the form

U=∇H1 ×∇H2, V= ∂uH1∇H2 − ∂uH2∇H1, (29)

they constitute a Poisson bivector, and in particular Jacobi identity (28) is satisfied.
Functions H1 and H2 are Casimir functions. For a Hamiltonian function H3, the Hamiltonian
dynamics is

u̇=−(∇H1 ×∇H2) ·∇H3, (30a)
_x= (∇H1 ×∇H2)∂uH3 +(∇H2 ×∇H3)∂uH1 +(∇H3 ×∇H1)∂uH2. (30b)

By permuting the roles of the functions H1, H2, and H3 (two of them are Casimirs and one
of them is Hamiltonian), one arrives at two additional Poisson realizations of the dynamics.
This is the case of a superintegrable (tri-Hamiltonian) formulation, [40].

8
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Two Poisson bivectors of a superintegrable 4D Hamiltonian system must satisfy the com-
patibility condition

U1 ·V2 +V1 ·U2 = 0 (31)

where U1,2 and V1,2 are the vectors identified from formula (26). We shall use this compatib-
ility condition to measure the error of DPNNs when learning Poisson bivectors in 4D.

Shivamoggi equations. An example of a 4D Poisson (and non-symplectic) system is the
Shivamoggi equations, which arise in the context of magnetohydrodynamics,

u̇=−uy, ẋ= zy, ẏ= zx− u2, ż= xy, (32)

see [41, 42]. The first integrals of this system of equations are

H1 = x2 − z2, H2 = z2 + u2 − y2, H3 = u(z+ x) . (33)

Vectors Ui and Vi of Poisson matrices N(i) (i = 1,2,3) for the Hamiltonian functions H1, H2,
and H3 are

U1 = 2u(−y,z,y) , V1 = 2
(
u2,y(x+ z) ,u2 − z(x+ z)

)
,

U2 = 2(x+ z)(0,u,0) , V2 = 2(x+ z)(x,0,−z) ,
U3 =−4(yz,zx,xy) , V3 = 4u(−x,0,z) , (34)

respectively. Note that all these three Poisson matrices are degenerate, since Ui ·Vi = 0 holds
for all i = 1,2,3. The equations of motion can be written as

X= ϑN(1)∇̄H1 = ϑN(2)∇̄H2 = ϑN(3)∇̄H3, ϑ=− 1
4(x+ z)

up to multiplication with a conformal factor ϑ in all three cases. Note that the 4D gradient is
denoted by ∇̄H= (∂uH,∂xH,∂yH,∂zH).

2.4. Semi-direct extension to a 6D system

6D Hamiltonian systems can again be symplectic or non-symplectic (degenerate). The former
case is represented by a particle in 3D (P3D) while the latter is for instance the HT dynamics.
Since the evolution of a P3D is canonical and thus analogical to the 2D dynamics, we shall
recall only the HT dynamics.

A supported rotating RB in a uniform gravitational field is called HT [43]. The mechanical
state of the body is described by the position of the center of mass r and angular momentum
M. In this case, the Poisson bracket is

{F,G}(HT)
(r,M) =−M ·

(
∂F
∂M

× ∂G
∂M

)
− r ·

(
∂F
∂M

× ∂G
∂r

− ∂G
∂M

× ∂F
∂r

)
. (35)

Even though the model is even dimensional, it is not symplectic. Two non-constant Casimir
functions are r2 and M · r. In this case, we assume the Hamiltonian function as

H=
1
2

(
M2
x

Ix
+
M2
y

Iy
+
M2
z

Iz

)
+Mglr ·χ, (36)

9
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where −gχ is the vector of gravitational acceleration. Hamilton’s equation is then

Ṁ=M× ∂H
∂M

+ r× ∂H
∂r

(37a)

ṙ=−r× ∂H
∂M

. (37b)

In the following sections, we apply DPNNs to the models here recalled and show that
DPNNs are capable to extract the Poisson bivector and Hamiltonian from simulated trajector-
ies of the models.

3. Learning Hamiltonian systems

Before going to the actual model recognition by DPNNs, let us briefly recall how neural net-
works work.

3.1. Introduction to neural networks

Neural networks serve as robust interpolators to high-dimensional functions. As they consist of
several interconnected layers of neurons, they can be seen as compositions of high-dimensional
mappings, which provides the robustness of approximation. Actually, the universal approxim-
ation theorem states roughly speaking that every continuous function from Rn to Rm can be
approximated by a neural network with one hidden layer and a non-linear activation function
[44–46]. These multi-layered architectures have shown a great capability for tasks like image
recognition, natural language processing, and other applications of deep learning [47].

A prototype of such neural networks is the fully connected (or dense) network, see figure 1,
where every neuron in a given layer is connected to every neuron in the subsequent layer. The
mathematical operation each neuron typically carries out is an affine transformation of the
inputs followed by the application of a non-linear activation function [48]. Parameters of the
affine transformation (weights and biases) are then subject to the learning procedure, where
they are sought so that a prescribed loss function is minimized.

The affine transformation between two consecutive layers is associated with weights
(the strengths of particular neuron–neuron connections) and biases, which are added to the
weighted sum of the inputs, turning a zero input into a non-zero value. The activation function
plays a crucial role because it provides non-linearity to the neural network, enabling it to
approximate more complicated functions. In our approach, we use the softplus function,

σsoftplus (x) = log(1+ ex) , (38)

which ensures a differentiability of the outputs [49, 50].
Training a neural network then involves tuning its weights and biases to minimize the differ-

ence between the actual and the expected outputs. This difference is quantified by a so called
loss function. The weights and biases are then adapted in such a way that the loss function is
minimized by a backpropagation algorithm, which computes the gradient of the loss function
with respect to the parameters by applying the chain rule of calculus [51] and then shifts the
parameters along the gradient. The simplest implementation called stochastic gradient descent
(SGD) works by splitting a large dataset into smaller chunks—minibatches and then perform-
ing incremental updates along the loss gradient of the corresponding batch. Many variations
of this algorithm exist such as the Adam algorithm (short for adaptive moment estimation)

10
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Figure 1. The structure of the energy neural network used in this paper.When the dimen-
sion of the learned data is three (as for instance in rigid body mechanics), the input layer
has three neurons. The output layer is just one number (the value of energy). Inbetween
the input and output layers, hidden layers provide the necessary complexity so that the
combined mappings from one layer to another is rich enough to approximate the energy.
The structure of the neural network for the L bivector is the same except for the size
of the output layer which is given by the number of independent components of that
bivector.

[52] that works like SGD but utilizes momentum term to make the optimization smoother. We
shall use Adam optimizer in this work. Although much time could be spent on the various
techniques of deep learning, we refer an interested reader to book [48], and proceed to the
actual application in Hamiltonian systems.

3.2. Hamiltonian model recognition by machine learning

Whenwe have a collection of snapshots of a trajectory of aHamiltonian system, how to identify
the underlying mechanics? In other words, how to recognize the model (Poisson bivector and
energy) from the snapshots?Machine learning provides a robustmethod for such task.Machine
learning has previously been shown to reconstruct GENERIC models [13, 14, 53], but the
Poisson bivector is typically known and symplectic. PNNs [24] provide a method for learning
also non-symplectic mechanics, which however relies on the identification of dimension of
the symplectic subdynamics in the Darboux–Weinstein coordinates and on a transformation
to the coordinates. Here, we show a robust method that does not need to know the dimension
of the symplectic subsystem and that satisfies Jacobi identity also in the coordinates in which
the data are prescribed. Therefore, we refer to the method as DPNNs.

DPNNs learn Hamiltonian mechanics directly by training a model for the L(x) matrix and
a model for the Hamiltonian H(x) simultaneously. The neural network that encodes L(x) only
learns the upper triangular part of L and skew-symmetry is then automatically satisfied. The
network has one hidden fully connected layer (with 64 neurons) equipped with the softplus
activation. The network that learnsH(x) has the same structure. The input layer has the dimen-
sion of the physical system (for instance three nodes in the case of RB), and dimension of the
output layer is the number of independent components of the trained quantity (number of

11
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Figure 2. Scheme SJ (soft Jacobi) of the methods that learn both the energy and Poisson
bivector.

independent components of the L bivector, or one when learning H). The actual learning was
implemented within the standard framework PyTorch [54], using the Adam optimizer [52],
and is publically available on Github [55].

The loss function contains squares of deviation of the training data and predicted traject-
ories that are obtained by the implicit midpoint rule (IMR) numerically solving the exact
equations (for the training data) or Hamilton’s equation with the trained models for L(x)
and H(x) (for the predicted data). Although such a model leads to a good match between the
grand truth trajectories and predicted trajectories, it does not need to satisfy Jacobi identity.
Therefore, we use also an alternative model where squares of the Jacobiator (10) are added
to the loss function, which enforces Jacobi identity in a soft way, see figure 2. Finally, in 3D
we know the form of the Poisson bivector since we have the general solution of Jacobi iden-
tity (20). In such a case, the neural network encoding L can be simplified to a network learn-
ing C(x) and Jacobi identity is automatically satisfied, see figure 3. In summary, we use three
methods:

• (WJ) Training L(x) and H(x) without the Jacobi identity. The loss function consists only
of the L2 error measuring the discrepancy between the training steps and steps obtained by
IMR iterations with bivector L and Hamiltonian H(x) encoded by the networks:

LWJ = cmov

∑
n

|
(
(xn+1)exact − xn

)
−
(
(xn+1)NN − xn

)
|2 (39a)

where n goes over all training steps. Each point (xn+1)NN is calculated from xn by the IMR
method (using the L and H that are being trained and encoded by the neural networks).
Prefactor cmov is used to scale the loss function to numerically advantageous values (typically
we use cmov = 10).

• (SJ) Training L(x) and H(x) with soft Jacobi identity, where the L2-norm of the
Jacobiator (10) is a part of the loss function. The loss function is thus

LSJ = LWJ + cJac
∑
n

∑
ijk

|Jijk (xn) |2, (39b)

where i, j, and k go over the dimension of the system (here 3, 4, or 6). Prefactor cJac is used
to scale the loss function into better numericalvalues (typically we use cJac = 10).

12
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Figure 3. Scheme IJ (implicit Jacobi) of the learningmethod implicitly enforcing Jacobi
identity.

• (IJ) Training C(x) and H(x) with implicitly valid Jacobi identity, based on the general solu-
tion of Jacobi identity in 3D (20). The loss function is the same as in the case of the WJ
method, but this time Jacobi identity is valid automatically,

LIJ = LWJ. (39c)

The training itself then proceeds in the following steps:

1. Simulation of the training and validation data. For a randomly generated set of initial con-
ditions, we simulate a set of trajectories by IMR. These trajectories are then split into steps
(couples of two consecutive states) and the collection of steps is split into a training set and
a validation set (40% used for the validation set). The collection of steps is shuffled and
split to batches (20 steps per a batch).

2. Parameters of the neural networks WJ, SJ, and IJ are trained by back-propagation on the
training data (using the Adam optimizer), minimizing the loss function. The loss function
differs in the three flavors of DPNNs, as in equation (39). Then, the loss function is evaluated
on the validation data to report the errors. The learning rate was set to 0.001 while the
number of epochs is chosen appropriately for each physical system.

3. A new set of initial conditions is randomly chosen and new trajectories are generated using
IMR, which gives the ground truth (GT).

4. Trajectories with the GT initial conditions are simulated using the trained models for L and
H and compared with GT.

In the following sections, we illustrate this procedure for learning RB mechanics, a particle
in two dimensions (P2D), Shivamoggi equations, a P3D, and HT dynamics.

3.3. Rigid body (RB)

Figure 4(a) shows a sample trajectory of RB dynamics (25) from the GT set, as well as traject-
ories with the same initial conditions, generated the DPNNs. The training was carried out on
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Figure 4. Rigid body: comparison of learned models (WJ, SJ, and IJ) with GT.

200 trajectories while GT consisted of 400 trajectories. Number of training epochs was 50. The
initial conditions for the training and validation datasets were sampled uniformly from a ball
of radius 11.18 (in them variable), each trajectory consisted of 200 steps, and the moments of
inertia were chosen as Ix = 10.0, Iy = 20.0, and Iz = 40.0.

Errors of the three learning methods (WJ, SJ, and IJ) are shown in table 1. All three meth-
ods were capable to learn the dynamics well. Figure 4(b) shows the norm of the Jacobiator
evaluated on the validation set. Jacobiator is zero for IJ and small in SJ, while it does not go
to zero in WJ. Therefore, IJ and SJ satisfy Jacobi identity while WJ does not.

Figure 5 shows the compatibility error of learning the Poisson bivector (21). All three meth-
ods learn the Poisson bivector well, but IJ is the most precise, followed by SJ and WJ. Finally,
figure 6 shows errors in learning the trajectoriesM(t). All three methods learn the trajectories
well, but in this case, the SJ method works slightly better.

Table 1 shows the medians of the errors for all the models and applied learning methods.
N/A indicates quantities that are not to be conserved. Error∆M is calculated as the median of
square deviation of M2 over all time steps. Error ∆r, ∆M · r, ∆M2, and ∆r2 are calculated
analogically. Error∆L in the RB case is calculated as log10 of the L

2 norm of the compatibility
condition (21), calculated for the learned J divided by its trace and multiplied by factor 1000
(using the exact J when generating the GT). In the P2D and P3D cases, where the Poisson
bivector is symplectic, the error is calculated as log10 of squares of the symplecticity con-
dition (16). In the case of Shivamoggi equations, the ∆L error is the log10 of the squared
superintegrable compatibility condition (31).∆detL errors are medians of squares of learned
detL, and in the Shivamoggi and the HT cases, the values are logarithmic, since determinants
are supposed to be zero in those cases.

3.4. Particle in 2D (P2D)

A particle moving in a 2D potential field represents a 4D symplectic system. Initial conditions
were sampled uniformly from balls of radius 11.18 in themomentum and 10.48 in the positions
(200 points), and each trajectory had 200 steps. The Hamiltonian was chosen as H(r,m) =
m2 + r2. GT was generated in the same way, but with 400 sampling points.
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Figure 5. Rigid body: compatibility errors for RB evaluated as log10 of squares of the
difference between the left hand side and right hand side of equality (21). That equality is
satisfied if and only if the two Poisson bivectors describe the same Hamiltonian system.
The distribution of errors is approximately log-normal. The compatibility error of the IJ
method is the lowest, followed by SJ and WJ.

Figure 6. Rigid body: distribution of log10 of squares of errors in M.
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Table 1. Summary of the learning errors for a rigid body (RB), particle in two dimen-
sions (P2D), Shivamoggi equations (Sh), particle in three dimensions (P3D), and heavy
top (HT).

Mod. Met. ∆M ∆r ∆L ∆M2 ∆(r×M) ∆r2 ∆(M · r) detL

RB WJ 1.5× 10−03 N/A −5.0 5.2× 10−04 N/A N/A N/A 0
SJ 4.6× 10−04 N/A −6.5 3.9× 10−04 N/A N/A N/A 0
IJ 1.7× 10−03 N/A −7.4 4.8× 10−04 N/A N/A N/A 0

P2D WJ 3.2× 10−03 3.2× 10−03 −1.8 N/A 9.7× 10−03 N/A N/A 0.83
SJ 2.9× 10−03 2.9× 10−03 −1.8 N/A 8.6× 10−03 N/A N/A 0.93

Sh WJ N/A 3.4× 10−04 −2.3 N/A N/A N/A N/A −2.1
SJ N/A 3.0× 10−04 −3.3 N/A N/A N/A N/A −3.4

P3D WJ 1.9× 10−02 1.9× 10−02 −1.6 N/A 3.7× 10−02 N/A N/A 0.91
SJ 1.0× 10−02 9.1× 10−03 −1.9 N/A 3.5× 10−02 N/A N/A 0.70

HT WJ 3.1× 10−02 9.9× 10−03 N/A N/A N/A 1.9× 10−03 2.8× 10−03 −2.5
SJ 1.6× 10−02 4.6× 10−03 N/A N/A N/A 1.3× 10−03 1.9× 10−03 −2.6

Figure 7. P2D: a sample trajectory. Both SJ and WJ learn the dynamics of a particle in
two dimensions well. Here, rx is the x-component of the r vector.

The simulated trajectories were learned by WJ and SJ methods (each with 50 epochs). No
implicit IJ method was used because no general solution of Jacobi identity in 4D is available
that would work for both the degenerate and symplectic Poisson bivectors. Results of the learn-
ing are in table 1, and both WJ and SJ learn the dynamics comparably well. Figure 7 shows a
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Figure 8. P2D: learned det(L).

sample trajectory, and figure 8 shows the distribution of learned det(L). The median determ-
inant (after a normalization such that the determinant is equal to 1.0 in GT), was close to this
value for both SJ and WJ, indicating a symplectic system.

3.5. Shivamoggi equations

Shivamoggi equations (32) represent a 4D Hamiltonian system that is not symplectic, and thus
has a degenerate Poisson bivector. The equations were solved within the range of parameters
u ∈ [−0.5,0.5], x ∈ [−0.5,0,5], y ∈ [−0.1,0.1], z ∈ [−0.5,0.5]. It was necessary to constraint
the range of r= (u,x,y,z) because for instancewhen u= 0, the solutions explode [41]. Figure 9
shows the u-component over a sample trajectory. The initial conditions were sampled uni-
formly (500 points) as well as the GT (also 500 points), and each trajectory consisted of 150
steps.

We used 80 epochs in the learning, and results of the WJ and SJ methods are in figures 9
and 10. Figure 10 shows the distribution of log10(det(L)), indicating that the system is indeed
degenerate. In comparison with determinants of L learned in the symplectic case of a 2D
particle (P2D), see table 1, the learned determinants are quite low in the Shivamoggi case
(after the same normalization as in the P2D case). Therefore, DPNNs are able to distinguish
between symplectic and non-symplectic Hamiltonian systems.

3.6. Particle in 3D (P3D)

Motion of a P3Dwas simulated and learned with the same parameters as the P2D (section 3.4).
Figure 11 shows momentum during a sample trajectory of a P3D space taken from the GT
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Figure 9. Shivamoggi: a sample trajectory, component u.

Figure 10. Shivamoggi: learned log10(det(L)).
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Figure 11. P3D: comparison of momentumM(t) on an exact trajectory (GT) and traject-
ories obtained by integrating the learned models (without Jacobi and with soft Jacobi)
in the case of a 3D harmonic oscillator.

set, as well as trajectories with the same initial conditions obtained by DPNNs (WJ and SJ
flavors). Training (and validation) dataset and GT dataset consisted of 200 and 400 trajectories,
respectively. Table 1 contains numerical values of the learning errors. Both WJ and SJ learn
the Poisson bivector as well as the trajectories (and thus also the energy) well. The median
determinant is close to unity, which indicates a symplectic system.

3.7. Heavy top (HT)

The HT dynamics is 6D, as well as the P3D. Parameters of the HT were the same as those of
RB (section 3.3), except for taking 300 sampling points for the training and validation data,
both cmov and cJac were set to 100, number of epochs was 100, and constant Mgl was set to
0.981.

Figures 12(a) and (b) show a sample trajectory of a HT from the GT set and trajectories
with the same initial conditions obtained by DPNNs. The training and validation were done in
two sets of trajectories (with 300 and 400 trajectories, respectively). Numerical values of the
learning errors can be found in table 1. For instance, the L matrix is close to being singular,
indicating a non-symplectic system, but SJ learns slightly better than WJ. Similarly, as in
the four-dimensional case, DPNNs distinguish between symplectic (P3D) and non-symplectic
cases (HT).
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Figure 12. Heavy top: comparison on an exact trajectory (GT) and trajectories obtained
by integrating the learned models (without Jacobi and with soft Jacobi) in case of the
heavy top.

4. Learning non-Hamiltonian systems

Let us now try to apply the WJ, SJ, and IJ methods, that are developed for learning purely
Hamiltonian systems, to a non-Hamiltonian system, specifically a dissipative RB. A way to
formulate the dissipative evolution of an RB is called the energetic Ehrenfest regularization
[56], where the Hamiltonian evolution of an RB is supplemented with dissipative terms that
keep the magnitude of angular momentum constant while dissipating the energy. The evolution
equations are

Ṁ=M×EM − τ

2
Ξ ·EM (40)

where τ is a positive dissipation parameter and where Ξ= LT · d2E ·L is a positive sym-
metric definite matrix (assuming that energy be positive definite) constructed from the
Poisson bivector of the RB Lij =−ϵijkMk and energy E(M). These equations satisfy that
Ṁ2 = 0 while Ė⩽ 0, and their solutions converge to pure rotations around the principal axis
of the RB (an axis with the highest moment of inertia), which is the physically relevant
solution.

Results of learning trajectories generated by solving equation (40) are shown in figure 13.
Parameters were the same as in section 3.3, except for taking the forward-Euler time-stepping,
60 epochs, 200 points for GT, and relaxation time 2 · dt (dt being the simulation step, cal-
culated as approximately 1% of the period). All the methods (WJ, SJ, and IJ) are cap-
able to learn the trajectories to some extent, but WJ is the most successful, followed by
SJ and IJ. As SJ, and especially IJ, use deeper properties of Hamiltonian systems (soft
and exact validity of Jacobi identity), they are less robust in the case of non-Hamiltonian
systems.

Figure 13 can be actually seen as an indication of non-Hamiltonianity of equation (40).
Systems where IJ learns best, followed by SJ and WJ much more likely to be Hamiltonian,
in contrast with non-Hamiltonian systems where WJ learns best, followed by SJ and IJ. In
other words, DPNNs can distinguish between Hamiltonian and non-Hamiltonian systems by
the order in which the flavors of DPNNs perform.
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Figure 13. Distribution of errors in the angular momentum M when learning dissipat-
ive rigid-body dynamics (40) by methods assuming purely Hamiltonian systems (WJ,
SJ, and IJ). WJ method is the most robust, capable to learn also the dissipative system
relatively well (although worse than in the purely Hamiltonian case). The SJ method,
which moreover softly imposes Jacobi identity, is less capable to learn the dissipative
system. The IJ method, which has the best performance in purely Hamiltonian systems,
see table 1, has the worst learning capability in the dissipative case.

5. Interpretation of results

The method and the insight gained contribute to the machine learning of equations research in
the following ways.

1. Learning of Hamiltonian mechanics has been a popular topic in equation identification and
learning. With, to our best knowledge, the only exception in [22, 24], the systems invest-
igated were of symplectic nature. Improving understanding of non-symplectic systems is a
pivotal contribution of this work since the development in this area may serve as a basis for
more sophisticated learning procedures on such systems [57]. For example, [6] could now
be used on complicated rotating systems with internal momenta, and symbolic expressions
could be used to approximate scalar neural networks identified in our work.

2. We further demonstrate the usefulness of inductive biases in the learning of physics.
Multiple works such as [58, 59] demonstrate the usefulness of inductive biases in the con-
struction of Hamiltonian neural networks. We introduce new choices of such inductive
biases and further solidify the belief that such modifications of the neural networks are
crucial for the implementation of adequate models for physics-oriented tasks.
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3. We propose a novel way how to distinguish Hamiltonian symplectic and non-symplectic
systems, as well as dissipative and purely Hamiltonian evolutions. The approach of includ-
ing dissipation in Hamiltonian neural networks is well known [60]. In principle, one would
be able to learn this dissipation by the magnitude of the learned term and judge its contri-
bution. However, our approach uses strictly Hamiltonian evolution and presents a way of
extracting information about dissipativeness in a simple and direct way, just by comparing
to what degree Jacobi identity is satisfied.

6. Conclusion

This paper proposes a machine learning method for learning Hamiltonian systems from data.
DPNNs learn directly the Poisson bivector and Hamiltonian of the mechanical systems with
no further assumptions about the structure of the systems. In particular, DPNN can distinguish
between symplectic and non-symplectic systems by measuring the determinant of the learned
Poisson bivector.

DPNNs come in three flavors: (i) without Jacobi identity (WJ), (ii) with softly imposed
Jacobi identity (SJ), and with implicitly valid Jacobi identity (IJ). Although all the methods
are capable to learn the dynamics, only SJ and IJ satisfy also the Jacobi identity. The typical
behavior is that IJ learns Hamiltonian models most precisely, see table 1, followed by SJ and
WJ.

When the three flavors of DPNNs are applied to learn a non-Hamiltonian system, it is
expected that the order of precision gets reversed, making WJ most precise, followed by SJ
and IJ. This reversed order of precision signalizes that the system learned by DPNNs is non-
Hamiltonian rather than Hamiltonian.

In future, wewould like to extendDPNNs to systemswith dissipation prescribed by gradient
dynamics [57, 61].
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