Laura K. Shannon, Bianca Viggiano, Raúl B. Cal, Larry G. Mastin, Alexa R. Van Eaton et Stephen A. Solovitz
Article de revue (2023)
Document en libre accès chez l'éditeur officiel |
Document publié alors que les auteurs ou autrices n'étaient pas affiliés à Polytechnique Montréal
Un lien externe est disponible pour ce documentAbstract
Abstract Explosive eruptions expel volcanic gases and particles at high pressures and velocities. Within this multiphase fluid, small ash particles affect the flow dynamics, impacting mixing, entrainment, turbulence, and aggregation. To examine the role of turbulent particle behavior, we conducted an analogue experiment using a particle-laden jet. We used compressed air as the carrier fluid, considering turbulent conditions at Reynolds numbers from approximately 5,000 to 20,000. Two different particles were examined: 14-μm diameter solid nickel spheres and 13-μm diameter hollow glass spheres. These resulted in Stokes numbers between 1 and 35 based on the convective scale. The particle mass percentage in the mixture is varied from 0.3% to more than 20%. Based on a 1-D volcanic plume model, these Stokes numbers and mass loadings corresponded to millimeter-scale particle diameters at heights of 4–8 km above the vent during large, sustained eruptions. Through particle image velocimetry, we measured the mean flow behavior and the turbulence statistics in the near-exit region, primarily focusing on the dispersed phase. We show that the flow behavior is dominated by the particle inertia, with high Stokes numbers reducing the entrainment by more than 40%. When applied to volcanic plumes, these results suggest that high-density particles can greatly increase the probability of column collapse.
URL de PolyPublie: | https://publications.polymtl.ca/56568/ |
---|---|
Titre de la revue: | Journal of Geophysical Research: Atmospheres (vol. 128, no 12) |
Maison d'édition: | Wiley |
DOI: | 10.1029/2022jd038108 |
URL officielle: | https://doi.org/10.1029/2022jd038108 |
Date du dépôt: | 02 nov. 2023 15:35 |
Dernière modification: | 25 sept. 2024 16:48 |
Citer en APA 7: | Shannon, L. K., Viggiano, B., Cal, R. B., Mastin, L. G., Van Eaton, A. R., & Solovitz, S. A. (2023). Flow Development and Entrainment in Turbulent Particle-Laden Jets. Journal of Geophysical Research: Atmospheres, 128(12), e2022JD038. https://doi.org/10.1029/2022jd038108 |
---|---|
Statistiques
Dimensions