<  Retour au portail Polytechnique Montréal

A machine learning framework for neighbor generation in metaheuristic search

Defeng Liu, Vincent Perreault, Alain Hertz et Andrea Lodi

Article de revue (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

This paper presents a methodology for integrating machine learning techniques into metaheuristics for solving combinatorial optimization problems. Namely, we propose a general machine learning framework for neighbor generation in metaheuristic search. We first define an efficient neighborhood structure constructed by applying a transformation to a selected subset of variables from the current solution. Then, the key of the proposed methodology is to generate promising neighbors by selecting a proper subset of variables that contains a descent of the objective in the solution space. To learn a good variable selection strategy, we formulate the problem as a classification task that exploits structural information from the characteristics of the problem and from high-quality solutions. We validate our methodology on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The experimental results show that our approach is able to achieve a satisfactory trade-offs between the exploration of a larger solution space and the exploitation of high-quality solution regions on both applications.

Mots clés

combinatorial optimization; metaheuristics; Tabu Search; Large Neighborhood Search; machine learning; Graph Neural Networks; Mixed Integer Programming (MIP).

Département: Département de mathématiques et de génie industriel
Organismes subventionnaires: Canada Excellence Research Chair in Data Science for Real-Time Decision-Making at Polytechnique Montreal
URL de PolyPublie: https://publications.polymtl.ca/54613/
Titre de la revue: Frontiers in Applied Mathematics and Statistics (vol. 9)
Maison d'édition: Frontiers media sa
DOI: 10.3389/fams.2023.1128181
URL officielle: https://doi.org/10.3389/fams.2023.1128181
Date du dépôt: 30 août 2023 10:19
Dernière modification: 27 sept. 2024 17:02
Citer en APA 7: Liu, D., Perreault, V., Hertz, A., & Lodi, A. (2023). A machine learning framework for neighbor generation in metaheuristic search. Frontiers in Applied Mathematics and Statistics, 9, 15 pages. https://doi.org/10.3389/fams.2023.1128181

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document