Defeng Liu, Vincent Perreault, Alain Hertz et Andrea Lodi
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
This paper presents a methodology for integrating machine learning techniques into metaheuristics for solving combinatorial optimization problems. Namely, we propose a general machine learning framework for neighbor generation in metaheuristic search. We first define an efficient neighborhood structure constructed by applying a transformation to a selected subset of variables from the current solution. Then, the key of the proposed methodology is to generate promising neighbors by selecting a proper subset of variables that contains a descent of the objective in the solution space. To learn a good variable selection strategy, we formulate the problem as a classification task that exploits structural information from the characteristics of the problem and from high-quality solutions. We validate our methodology on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer Programs. The experimental results show that our approach is able to achieve a satisfactory trade-offs between the exploration of a larger solution space and the exploitation of high-quality solution regions on both applications.
Mots clés
combinatorial optimization; metaheuristics; Tabu Search; Large Neighborhood Search; machine learning; Graph Neural Networks; Mixed Integer Programming (MIP).
Département: | Département de mathématiques et de génie industriel |
---|---|
Organismes subventionnaires: | Canada Excellence Research Chair in Data Science for Real-Time Decision-Making at Polytechnique Montreal |
URL de PolyPublie: | https://publications.polymtl.ca/54613/ |
Titre de la revue: | Frontiers in Applied Mathematics and Statistics (vol. 9) |
Maison d'édition: | Frontiers media sa |
DOI: | 10.3389/fams.2023.1128181 |
URL officielle: | https://doi.org/10.3389/fams.2023.1128181 |
Date du dépôt: | 30 août 2023 10:19 |
Dernière modification: | 27 sept. 2024 17:02 |
Citer en APA 7: | Liu, D., Perreault, V., Hertz, A., & Lodi, A. (2023). A machine learning framework for neighbor generation in metaheuristic search. Frontiers in Applied Mathematics and Statistics, 9, 15 pages. https://doi.org/10.3389/fams.2023.1128181 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions