<  Retour au portail Polytechnique Montréal

A causal direction test for heterogeneous populations

Vahid Partovi Nia, LI Xin-lin, Masoud Asgharian et Shoubo Hu

Article de revue (2022)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

A probabilistic expert system emulates the decision-making ability of a human expert through a directional graphical model. The first step in building such systems is to understand data generation mechanism. To this end, one may try to decompose a multivariate distribution into product of several conditionals, and evolving a blackbox machine learning predictive models towards transparent cause-and-effect discovery. Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications. We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction. We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm where both the labels and the number of components are estimated from the collected data to adjust the test statistic. Our simulation result show that the proposed adjustment significantly improves the performance of the causal direction test statistic for heterogeneous data. We study large sample behaviour of our proposed test statistic and demonstrate the application of the proposed method using real data.

Mots clés

Bayesian hierarchical model; Causal inference; Clustering; Graphical models; Belief network; Probabilistic expert systems; Testing statistical hypotheses

Sujet(s): 2950 Mathématiques appliquées > 2960 Modélisation mathématique
3000 Statistique et probabilité > 3008 Probabilité appliquée
Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/54332/
Titre de la revue: Machine learning with applications (vol. 7)
Maison d'édition: Elsevier BV
DOI: 10.1016/j.mlwa.2021.100235
URL officielle: https://doi.org/10.1016/j.mlwa.2021.100235
Date du dépôt: 02 nov. 2023 13:53
Dernière modification: 25 sept. 2024 23:01
Citer en APA 7: Partovi Nia, V., Xin-lin, L.I., Asgharian, M., & Hu, S. (2022). A causal direction test for heterogeneous populations. Machine learning with applications, 7, 100235 (8 pages). https://doi.org/10.1016/j.mlwa.2021.100235

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document