Vahid Partovi Nia, LI Xin-lin, Masoud Asgharian et Shoubo Hu
Article de revue (2022)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
A probabilistic expert system emulates the decision-making ability of a human expert through a directional graphical model. The first step in building such systems is to understand data generation mechanism. To this end, one may try to decompose a multivariate distribution into product of several conditionals, and evolving a blackbox machine learning predictive models towards transparent cause-and-effect discovery. Most causal models assume a single homogeneous population, an assumption that may fail to hold in many applications. We show that when the homogeneity assumption is violated, causal models developed based on such assumption can fail to identify the correct causal direction. We propose an adjustment to a commonly used causal direction test statistic by using a $k$-means type clustering algorithm where both the labels and the number of components are estimated from the collected data to adjust the test statistic. Our simulation result show that the proposed adjustment significantly improves the performance of the causal direction test statistic for heterogeneous data. We study large sample behaviour of our proposed test statistic and demonstrate the application of the proposed method using real data.
Mots clés
Bayesian hierarchical model; Causal inference; Clustering; Graphical models; Belief network; Probabilistic expert systems; Testing statistical hypotheses
Sujet(s): |
2950 Mathématiques appliquées > 2960 Modélisation mathématique 3000 Statistique et probabilité > 3008 Probabilité appliquée |
---|---|
Département: | Département de mathématiques et de génie industriel |
URL de PolyPublie: | https://publications.polymtl.ca/54332/ |
Titre de la revue: | Machine learning with applications (vol. 7) |
Maison d'édition: | Elsevier BV |
DOI: | 10.1016/j.mlwa.2021.100235 |
URL officielle: | https://doi.org/10.1016/j.mlwa.2021.100235 |
Date du dépôt: | 02 nov. 2023 13:53 |
Dernière modification: | 25 sept. 2024 23:01 |
Citer en APA 7: | Partovi Nia, V., Xin-lin, L.I., Asgharian, M., & Hu, S. (2022). A causal direction test for heterogeneous populations. Machine learning with applications, 7, 100235 (8 pages). https://doi.org/10.1016/j.mlwa.2021.100235 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions