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A B S T R A C T

A probabilistic expert system emulates the decision-making ability of a human expert through a directional
graphical model. The first step in building such systems is to understand data generation mechanism. To this
end, one may try to decompose a multivariate distribution into product of several conditionals, and evolving
a blackbox machine learning predictive models towards transparent cause-and-effect discovery. Most causal
models assume a single homogeneous population, an assumption that may fail to hold in many applications. We
show that when the homogeneity assumption is violated, causal models developed based on such assumption
can fail to identify the correct causal direction. We propose an adjustment to a commonly used causal direction
test statistic by using a 𝑘-means type clustering algorithm where both the labels and the number of components
are estimated from the collected data to adjust the test statistic. Our simulation result show that the proposed
adjustment significantly improves the performance of the causal direction test statistic for heterogeneous data.
We study large sample behaviour of our proposed test statistic and demonstrate the application of the proposed
method using real data.
. Introduction

Causal inference is one of the most fundamental concepts in learn-
ng. Teaching the machine how to find cause-and-effect relationship,
ften using a mathematical model, is as essential as teaching children
ow to connect the dots. Causality is perhaps as old as human en-
eavour for learning and has historically developed along with the
evelopment of human knowledge in almost any domain of science. Sci-
ntific studies tend to draw cause and effect conclusions after observing
ssociations. However, most observed associations translate to causal
onclusions only under certain conditions. Early causal problem formu-
ation based on data observation appears in statistics (Neyman, 1923),
conomics (Heckman, 1976), medicine (Greenland, Pearl, & Robins,
999), and computer science (Pearl, 1986) among others. Research on
ausality typically starts with hypothesizing a cause and setting up an
xperimental study in which association can be translated into causal
elationship (Fisher, 1926). In many applications, however, logistic or
ther constraints may preclude the possibility of conducting experimen-

∗ Corresponding author at: Huawei Noah’s Ark Lab, Suit 201, 7101 Park avenue, Montreal, Quebec H3N 1X9, Canada.
E-mail addresses: vahid.partovinia@huawei.com (V. Partovi Nia), xinlinli1@huawei.com (X. Li), masoud.asgharian2@mcgill.ca (M. Asgharian),

bhu@cse.cuhk.edu.hk (S. Hu), geng.yanhui@huawei.com (Y. Geng), chenzhitang2@huawei.com (Z. Chen).

tal studies. Methods have therefore been developed for cause-and-effect
conclusions to be drawn from data collected in observational studies.

With the advent of technology, modern applications often include
a large number of variables, many possibly spurious, measured on
each subject under study. Identifying causal direction, especially in
such high dimensional settings, albeit challenging, but crucial to gain
insights into the data generating mechanism and hence data interpre-
tation, and also a deeper understanding of data structure. There are
recent efforts in using causal analysis to interpret large dimensional
data in decision making (Wu, 2010), in natural language process-
ing (Dehkharghani, Mercan, Javeed, & Saygin, 2014), in transporta-
tion (Kayikci & Stix, 2014), and in genetics (Schadt et al., 2005), among
others.

In many applications causal conclusion is drawn for multiple vari-
ables, through a cause and effect model also known as belief net-
work. Such models decompose a multivariate distribution into several
conditional distributions. Many of such decompositions are theoreti-
cally equivalent and detecting which one is the actual data generating
mechanism often requires domain knowledge of a human expert, see
Fig. 1.
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Fig. 1. A human expert (top panel) versus an expert system embedded with automatic
reasoning (bottom panel) in which cause and effect model attaches data to the
knowledge base.

1.1. Preliminaries

The precursor to establishing the cause and effect relationship be-
tween several variables is to identify the causal direction between a
pair of variables. It transpires that inferring causal direction between a
pair of variables, say 𝑋 and 𝑌 , should be closely tied to the conditional
istributions of 𝑋 given 𝑌 and of 𝑌 given 𝑋. Assume (𝑋, 𝑌 ) follows

a complex joint distribution, say 𝑝(𝑥, 𝑦). Following the independent
ausal mechanisms principles postulate (Schölkopf et al., 2012), causal
irection inference looks for evidence in the observed data to prefer
certain conditional decomposition, either 𝑝(𝑥, 𝑦) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥) or
(𝑥, 𝑦) = 𝑝(𝑥 ∣ 𝑦)𝑝(𝑦). In the former decomposition 𝑥 causes 𝑦 or 𝑥 → 𝑦
nd in the latter decomposition 𝑦 causes 𝑥 or 𝑦 → 𝑥, see Fig. 2.

In theory, both decompositions are valid and therefore inferring a
causal direction without further assumptions is ill-defined and uniden-
tifiable. Under more structural assumptions, such as the Additive Noise
Model (ANM), the direction of decomposition becomes identifiable, and
observed data can be used to infer the cause and effect relationship.
1.2. Additive noise model

ANM (Hoyer, Janzing, Mooij, Peters, & Schölkopf, 2009) represents
the effect as a function of the cause with an additive independent noise,
i.e. 𝑦 = 𝑓 (𝑥)+𝜀, in which 𝑓 is a nonlinear deterministic smooth function
and 𝜀 ∼ 𝑝(𝜀) is an independent noise. There is no backward model of the
form 𝑥 = 𝑔(𝑦)+𝜀 that admits an ANM in the anti-causal direction unless
he backward noise depend on 𝑦. This shows a causal direction can be
xamined based on testing 𝜀 ⟂⟂ 𝑥. One may first fit a smooth regression
odel to predict 𝑦̂ = 𝑓 (𝑥), predict the noise 𝜀̂ = 𝑦−𝑦̂, and then test if the

esiduals 𝜀̂ is independent of the predictor 𝑥, 𝜀̂ ⟂⟂ 𝑥 (Hoyer et al., 2009).
his test of independence can be used as an evidence for inferring the
ausal direction for a pair of variables empirically.

Most causal inference approaches assume a single causal model
or the observed data (Janzing & Scholkopf, 2010; Shimizu, Hoyer,
yvärinen, & Kerminen, 2006; Zhang & Hyvärinen, 2009) so they
re suitable for homogeneous data. In many applications, however,
ata are collected from several different sources. Due to the unknown
ata generation process and variability in the data source, sampling
cheme, sampling conditions, etc there is no guarantee on the viability

f such homogeneity assumptions in practice. Naive use of the existing u

2

lustering algorithms misleads causal direction inference. Moreover,
ach sub cluster may declare its own causal direction to confuse the
ltimate judgment. There has been little research on the effect of
eterogeneity in causal direction test. However, there some works
hat consider population heterogeneity in causal inference, but all of
hem mostly consider the causal effect rather than causal direction
est (Brand & Thomas, 2013; Hong & Raudenbush, 2013; Xie, 2011,
013).

When observations are generated from a non-homogeneous pop-
lation that is comprised of several homogeneous sub-populations,
he number of homogeneous sub-populations affects the causal di-
ection test statistic performance to a great extent. The distribution
f the causal direction test statistic needs to be adjusted when the
omogeneity assumption fails to hold.
.3. Causal direction test

The test statistic for causal direction relies on a measure of de-
endence between the error and the predictor. Measuring dependence
n heterogeneous populations requires careful considerations as the
ollowing simple example shows in Fig. 3. Marginal correlation as a
easure of dependence which ignores the cluster labels, may contradict

he inter-cluster correlation which uses the cluster labels if data are
enerated from a heterogeneous population. The marginal correlation
ecomes significantly positive if cluster centres are aligned about the
ine 𝑦 = 𝑥, and is significantly negative if centres are aligned about
= −𝑥, see Fig. 3 left panel. Consequently, building a test statistic that

gnores cluster labels may lead to misleading judgments and affects the
est performance, and type I error probability, see Fig. 3 right panel.

What depicted in Fig. 3 is essentially Simpson’s paradox (Simp-
on, 1951) presented in terms of correlation rather than conditional
robability (Rücker & Schumacher, 2008). The intimate tie between
impson’s paradox and causal inference has been well documented
y Pearl (2009). This is the main motivation to correct the test of causal
irection for heterogeneous data.

Correcting the test statistic requires estimating the cluster labels as
ell as the number of cluster components. Estimating the number of
omogeneous sub-populations is a challenging task. In additive noise
odels the observed number of cluster components is heavily affected

y the range of the observed input 𝑥. Fig. 4 provides a visual intuition,
here the identified number of cluster components heavily depends on

he observed range of 𝑥. If 𝑥 is observed about 0.7, a single component
merges. However, observing 𝑥 about 0.5 or 1.0 changes the number
f observed components to 2 or 3 respectively. To this end, we propose
clustering algorithm that labels and the number of components are

stimated from the collected data. The estimated labels are used to
djust the causal direction test statistic.

Recently, Hu, Chen, Partovi Nia, Chan, and Geng (2018) and Liu
nd Chan (2016) proposed inferring the causal direction on ANMs
or discrete and continuous variables respectively. Here we focus on
ontinuous variables. Hu et al. (2018) proposed using the 𝑘-means
lgorithm on causal parameters and used a predetermined number
f sub-populations to overcome data heterogeneity. To the best our
nowledge, there is nothing in the literature on correcting the causal
irection test statistic after clustering. We speculate that this gap is due
o a possible misconception, that is clustering has little effect on causal
irection test. We show that this is simply wrong, and the cluster labels
lay a crucial role in causal direction inference.

It is evident that the clustering phase is unjustifiable if it does not
elp inferring the causal direction. Our work builds on Hu et al. (2018)
nd extends it in two directions: (i) provides a clustering method with
mprecise number of cluster components. (ii) uses the clustering infor-
ation to adjust the test statistic and re-examine the causal direction

sing clustering labels.
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Fig. 2. Examples of simple cause and effect models for three variables. When 𝑦 causes 𝑥, i.e. 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥 ∣ 𝑦)𝑝(𝑦)𝑝(𝑧), left panel. When 𝑥 causes 𝑦, i.e. 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑦 ∣ 𝑥)𝑝(𝑥)𝑝(𝑧),
iddle panel. When 𝑦 and 𝑧 cause 𝑥, i.e. 𝑝(𝑥, 𝑦, 𝑧) = 𝑝(𝑥 ∣ 𝑦, 𝑧)𝑝(𝑦)𝑝(𝑧), right panel.
Fig. 3. Left panel: marginal correlation which ignore cluster labels (grey) may contradict inter-cluster correlation which uses clustering labels (blue and red). Right panel: Empirical
type I error probability 𝛼 for testing inter-cluster correlation with zero while ignoring cluster labels deviates from the theoretical value 0.05 as the number of cluster components
ncreases. Data are simulated from a mixture of 1 ≤ 𝑘 ≤ 8 standard Gaussian while cluster centres are aligned along 𝑦 = 𝑥. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Illustration of from three clusters, 𝑦 = 𝑥3 + 𝜀 (blue), 𝑦 = 0.5𝑥 + 𝜀 (orange),
𝑦 = 0.8 − 𝑥3 + 𝜀 (red). The causal model imposes a different number of observed
components depending on observed 𝑥, calling for a clustering with flexible component
size. Test of causal direction suffers from the same problem in heterogeneous data. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

We use a model in which the causal direction of the mixture of
ANMs is identifiable, and adopt Partially Observable Gaussian Pro-
cesses Model for estimation (Lawrence, 2005) proposed in Hu et al.
(2018).
2. Partially observed additive noise model

We assume if 𝑥 → 𝑦, the distribution of 𝑥 and the function 𝑓
apping 𝑥 to 𝑦 are independent (Janzing & Scholkopf, 2010). We
ote that 𝑓 is, for instance, the conditional expectation of 𝑌 given
= 𝑥. The independence can perhaps be best understood in a parametric

etting where the joint distribution of (𝑋, 𝑌 ) is known up to finitely
3

any unknown parameters. The independence then means that the
arginal distribution of 𝑋 and the conditional distribution of 𝑌 given

𝑋 do not have any common unknown parameter. In other words, as
far as describing the relationship between 𝑋 and 𝑌 are concerned, the
onditional distribution of 𝑌 given 𝑋 and the joint distribution of (𝑋, 𝑌 )
ave the same information. So much so that the marginal distribution
f 𝑋 does not have any pertinent information about the conditional
istribution of 𝑌 given 𝑋.

We interpret the independence between the cause and mechanism
nly through the cluster-specific model parameter 𝜃𝑐 that captures all
roperties of the mapping 𝑓 , while 𝜃𝑐 is independent of the cause 𝑥.
e assume the model is identifiable, i.e. if 𝑥 → 𝑦, there is no backward

dditive noise model 𝑥 = 𝑔(𝑦; 𝜈𝑐 ) + 𝜀 that satisfies 𝑦 ⟂⟂ (𝜀, 𝜈𝑐 ). This
ssumption is not restrictive as Hoyer et al. (2009) proved it for a
ingle population additive noise model, and Hu et al. (2018, Theorem
) extended this result for a several population model. In other words,
f 𝑥 is independent of 𝜃𝑐 in the causal direction, it is very likely that 𝑦

and 𝜈𝑐 are dependent in the anti-causal direction.
We start the estimation process by projecting a set of centred 𝑛

dimensional data 𝐱 = [𝑥1,… , 𝑥𝑛]⊤ as the observed cause, and 𝐲 =
[𝑦1,… , 𝑦𝑛]⊤, as the observed effect onto 𝑑 hidden dimensions. The
projection problem is formalized as the maximization of the Gaussian
log-likelihood

(𝐊) = −𝑑𝑛
2

log(2𝜋) − 𝑑
2
log |𝐊| − 1

2
tr
(

𝐊−1𝐲𝐲⊤
)

,

where 𝐊 is the covariance matrix 𝐊 = 𝝓𝝓⊤ + 𝛽−1𝐈, 𝛽 is a positive
cale, 𝐈 is the identity matrix. The canonical nonlinear feature map
= [𝜙(𝑥1),… , 𝜙(𝑥𝑛)]⊤ is computed using the kernel trick. In the kernel

epresentation, features have zero mean and the variance covariance
f the 𝐲 is defined by the cross products of the kernel features which
reates 𝐊.

The latent variable 𝜃𝑖 is brought in the additive noise model through
concatenated latent predictor 𝐱̃𝑖⊤ = [𝑥𝑖, 𝜃𝑖] and the Hilbert space is

e-defined based on the new vector 𝐱̃𝑖. Therefore, the latent parameters
re estimated by maximizing the Gaussian log-likelihood

(𝜽) = −
(𝑑 + 1)𝑛

log(2𝜋) − 𝑑 + 1 log |𝐊̃| − 1 tr
(

𝐊̃−1𝐲𝐲⊤
)

, (1)

2 2 2



V. Partovi Nia, X. Li, M. Asgharian et al. Machine Learning with Applications 7 (2022) 100235

[
(
c
c

w
f
a
𝑦
b

d
j
H

H

w
𝑦



c

where 𝜽 is the vector composed of 𝜃𝑖’s, 𝐊̃ = 𝚽̃𝚽̃⊤, and 𝚽̃𝑛×(𝑑+1) =
𝜙(𝐱̃1),… , 𝜙(𝐱̃𝑁 )]. This is an augmented Gaussian log likelihood, for
𝐱, 𝜃) which is a new feature space of dimension 𝑑 + 1. The variance
ovariance matrix (𝑑 + 1) × (𝑑 + 1) which is constructed through the
ross products of the kernel features on the extended vector (𝐱𝑖, 𝜃𝑖).

The parameter vector 𝜽 appears in 𝐊̃ through 𝐱̃. In our developments
e focus on univariate 𝜃𝑖, but the methodology is general and is valid

or multivariate projection as well. This approach re-formalizes the
dditive model 𝑦 = 𝑓 (𝑥, 𝜃) + 𝜀 in terms of the augmented variable
= 𝑓 (𝐱̃) + 𝜀. However, still the log-likelihood of an ill-defined model,
ecause 𝑥 and 𝜃 should be independent.

The Hilbert–Schmidt independence criterion (HSIC) measures the
ependence between observations of a pair of random variables by pro-
ecting them onto the reproducing kernel Hilbert space. The empirical
SIC is

SIC = 1
𝑛2

tr(𝐊𝐇𝐋𝐇), (2)

here 𝐊 is the kernel element of 𝑥, 𝑘(𝑥𝑖, 𝑥𝑖′ ), 𝐋 is the kernel element of
, 𝑙(𝑦𝑖, 𝑦𝑖′ ), 𝐇 = 𝐈 − 1

𝑛 𝟏𝟏
⊤ and 𝟏 is the unit vector of size 𝑛.

The independence between 𝑥 and 𝜃 is encouraged by adding HSIC
as a regularizer to the log-likelihood term through the regularization
constant 𝜆 > 0

(𝜽) = (𝜽) − 𝜆 logHSIC(𝜽). (3)

Causal parameters are estimated by 𝜽̂ = arg max (𝜽) using scaled
conjugate gradient maximization (Hu et al., 2018).

We first estimate the model parameters for each subject 𝜃𝑖, 𝑖 =
1,… , 𝑛, we then cluster 𝜃𝑖 while the number of clusters 𝑘 is imprecise.
This maps 𝜃𝑖 to 𝜃𝑐 , 𝑐 = 1,… , 𝑘 while 𝑘 varies 𝐾 − 𝛥 ≤ 𝑘 ≤ 𝐾 + 𝛥
for a given 𝛥. The cluster component range 𝛥 has little effect on
the performance of the clustering algorithm and is determined by the
computational budget.

3. Clustering method

The proposed clustering method works via combining additive noise
models (Hoyer et al., 2009) with product partition models (Hartigan,
1990). We provide more details about the intuition behind the cluster-
ing method below. This intuition provide some insights about how to
estimate the number of cluster components.

The clustered version of the additive noise models is composed
of several additive noise models of the same causal direction (Hu
et al., 2018). Causal models are developed given data labels which are
to be estimated, either mutually or after estimation of causal model
parameters. Following Hu et al. (2018) we propose the latter approach
since it is computationally less demanding.

A cluster additive noise model is a set of causal models of the same
causal direction between two continuous random variables 𝑥 and 𝑦 with
realizations 𝑥𝑖 and 𝑦𝑖, 𝑖 = 1,… , 𝑛

𝑦𝑖 = 𝑓 (𝑥𝑖 ∣ 𝜃𝑐 ) + 𝜀𝑖, (4)

where 𝑥 denotes the cause, 𝑦 denotes the effect, 𝑓 is a smooth function,
nonlinearity parameters 𝜃𝑐 that parametrize the smooth function 𝑓 , and
𝜀 is the statistical noise.

In model (4) we assume

1. 𝑥𝑖 ∼ 𝑝(𝑥), 𝜃𝑐 ∼ 𝑝(𝜃) are independently and identically drawn from
a Gaussian distribution.

2. The statistical error is independent of the covariates and cluster-
ing parameters 𝜀𝑖 ⟂⟂ 𝑥𝑖′ and 𝜀𝑖 ⟂⟂ 𝜃𝑐 .

3. The clustering parameters 𝜃𝑐 independently and identically
drawn from a Gaussian distribution.

The difference between traditional causal models and cluster causal
models is the way that causal parameters 𝜃 parametrize the smooth
function 𝑓 . The nonlinearity parameter 𝜃 is drawn randomly from a
𝑐

4

Fig. 5. The generative process of the proposed causal model 𝑓 (𝑥 ∣ 𝜽) and how it
interacts with the clustering model 𝑓 (𝑥, 𝑦 ∣ 𝜽, 𝐳) of Eq. (6).

probabilistic model independently. In other words, a set of independent
generating mechanisms is assumed for each sub-population through 𝜃𝑐 .
Our formulation is slightly different from Hu et al. (2018) that assumes
the causal parameters 𝜃𝑐 are drawn from a fixed set, but we assume they
are generated from an independent Gaussian distribution. Although this
modification seems minor, it plays a major role in attaching the causal
model to the clustering algorithm in Fig. 5 and allows to aggregate
the causal test statistic through the cluster independence assumption.
This model is inspired by commonly encountered situations where the
data generating process from one independent trial to another may be
different due to the influence of uncontrollable factors.

We first re-formalize probabilistic clustering model through
Bayesian regression and derive the clustering algorithm using this
model. This viewpoint allows us use the marginal posterior as an
estimation tool for the cluster component size.

Assume the following Bayesian regression for the latent parameters

𝜽 ∣ 𝝁 ∼  (𝐙𝝁, 𝜎2𝐈)
𝝁 ∼  (𝜽̄, 𝜅(𝜏𝜎)2𝐈), (5)

where 𝜎2 is the common within-cluster variance, 𝜏2 is the between-
luster to within-cluster variance ratio, and 𝜽̄ = [𝜃̄1,… , 𝜃̄𝑘] is the vector

of the cluster averages. The over-dispersion parameter 𝜅 > 1 controls
the prior information, i.e. a large 𝜅 value gives a flat prior with minimal
prior information about the parameters. This model is a sort of empirical
Bayes in which the data statistic is utilized to parametrize the prior.

We adopt the product partition model (Hartigan, 1990) for clustering,
i.e.

𝑓 (𝐱, 𝐲 ∣ 𝜽, 𝐳) =
𝑘
∏

𝑐=1

∏

{𝑖∣𝑧𝑖=𝑐}
𝑓 (𝑥𝑖, 𝑦𝑖 ∣ 𝜃𝑖) (6)

The clustering mechanism adds an unobserved label 𝑧𝑖 to each obser-
vation, i.e.

(

𝑥𝑖, 𝑦𝑖, 𝑧𝑖
)

or equivalently (𝜃𝑖, 𝑧𝑖) in which 𝑧𝑖 ∈ {1, 2,… , 𝑘} is
the label and 𝑘 is the uncertain number of sub-populations. The clus-
tering method relies on 𝜃𝑖 ∈ R which is the key to distinguish between
different generating mechanisms. Note that for an identifiable mapping
𝑓𝜃 , one can directly cluster generating mechanisms by clustering 𝜃𝑖’s.
Therefore, 𝜃𝑐 in (6) is equivalent to the pair (𝜃𝑖, 𝑧𝑖 = 𝑐).

A practical causal cluster model should uncover the unknown num-
ber of cluster components 𝑘 as well as the unobserved label 𝑧 . We
𝑖
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therefore focus on devising an algorithm that allows for clustering 𝜃𝑖
ith a flexible component size 𝑘 = max(𝑧𝑖) ∈ {𝐾 − 𝛥,… , 𝐾 + 𝛥}, given

positive integers 𝐾 and 𝛥, 𝐾 > 𝛥+1. The algorithm looks like a simple
xtension of 𝑘-means, but the inspiration comes from a probabilistic
lustering that satisfies certain conditions to guarantee convergence.

1. Initialization: Set 𝐾, 𝛥, initialize 𝐳.
2. Run 2𝛥 + 1 clustering chains in parallel 𝑘 ∈ {𝐾 − 𝛥,… , 𝐾 + 𝛥}
3. For each chain of size 𝑘

(3.1) centre update: 𝜇𝑐 = 𝜃̄𝑐
(3.2) label update: 𝑧𝑖 = arg min𝑐 |𝜃𝑖 − 𝜇𝑐 |.

4. Within-cluster variance computation:

𝜎2 = 1
𝑁

𝑘
∑

𝑐=1

𝑛𝑐
∑

{𝑖∣𝑧𝑖=𝑐}
(𝜃𝑖 − 𝜃̄𝑐 )2.

5. Between-to-within variance ratio computation:

𝜏2 = 1
𝑘𝜎2

𝑘
∑

𝑐=1
(𝜃̄𝑐 − 𝜃̄)2

6. Component size estimation: 𝑘̂ = arg max𝑘 𝓁(𝐳 ∣ 𝜽, 𝑘).

We iterate between 3.1 and 3.2 until convergence and ultimately at
step 5 report the labels 𝐳 with 𝑘 that maximize

𝓁(𝐳 ∣ 𝜽, 𝑘) = − 𝑛
2
log 2𝜋𝜎2 − 1

2𝜎2

𝑘
∑

𝑐=1

∑

{𝑖∣𝑧𝑖=𝑐}
(𝜃𝑖 − 𝜃̄𝑐 )2 −

1
2

𝑘
∑

𝑐=1
log(𝜅𝜏2𝑛𝑐 + 1),

(7)

ee Fig. 6 that visualizes the algorithm in a condensed flowchart. Eq. (7)
s derived by marginalizing over the model parameters

(𝐳 ∣ 𝜽, 𝑘) = log∫ ⋯∫ 𝑓 (𝐲 ∣ 𝜽, 𝐳)𝑓 (𝜽 ∣ 𝐳)𝑑𝜽 + log 𝑝(𝐳),

he multi dimensional integral is a Gaussian integral which turns out
o be analytically tractable and can be simplified to (7). We assumed

constant prior for labels 𝑝(𝐳) but there are some other choices like
multinomial Dirichlet (Partovi Nia & Davison, 2015).

The clustering algorithm resembles the 𝑘-means to a great extent
and only adds a few more steps to estimate the cluster component size
using the marginal log likelihood 𝓁. The clustering hyperparameter 𝜅 is
a sort of over-dispersion of cluster centres. Our experiments show 𝜅 =
𝑘𝑛∕4 is a good choice. The computational complexity of the clustering
lgorithm is (𝛥𝑁𝐾). The following result (Theorem 1) shows that a
tochastic version of the proposed clustering algorithm converges to a
tationary distribution independent of 𝐾. However, 𝐾 affects the search
pace and the convergence rate of the algorithm may differ in practice
or different values of 𝐾.

heorem 1. Suppose 𝜎2 and 𝜏2 are given.

1. cluster centre update: sample from a Gaussian distribution with mean

𝜇𝑐 ∼ 
(

𝜃̄𝑐 (1 +
1

𝑛𝑐𝜅𝜏2
)−1, 𝜎2(𝑛𝑐 +

1
𝜅𝜏2

)−1
)

.

2. cluster label update: sample from Multinomial distribution with prob-
ability mass

𝑧𝑖 ∼ Pr(𝑧𝑖 = 𝑐) =
𝜙
(

𝜃𝑖−𝜇𝑐
𝜎

)

∑𝑘
𝑐=1 𝜙

(

𝜃𝑖−𝜇𝑐
𝜎

) , 𝑐 = 1,… , 𝑘

in which 𝜙(⋅) is a standard Gaussian density.
3. cluster component update: sample from Multinomial distribution with

probabilities proportional to exp{𝓁(𝐳 ∣ 𝜽, 𝑘)} of (7).
5

Fig. 6. The condensed flow chart of the proposed clustering algorithm while 𝑘-means
s used as a subroutine.

hen the proposed clustering algorithm converges to the stationary distribu-
ion

(𝐳 ∣ 𝜽) ∝
𝐾+𝛥
∑

𝑘=𝐾−𝛥
exp{𝓁(𝐳 ∣ 𝜽, 𝑘)}

See Appendix for the proof.
This probabilistic clustering method resembles 𝑘-means and cluster

ize estimation resembles BIC scoring (Schwarz et al., 1978). There
as been various attempts to use BIC for cluster component selection.
everal authors including (Pelleg, Moore, et al., 2000) studied 𝑘-means
ith BIC scoring and report that BIC over-estimates the number of com-
onents. Our scoring is developed for the clustering context, in which
-means matches the setting of Bayesian linear regression: labelling
pdate is equivalent to design matrix estimation, and mean update is
quivalent to the coefficient estimation. Our formulation shows that
he conventional BIC scoring is inappropriate for 𝑘-means and requires
roper generalization. It also shows the marginal posterior scoring with
becomes BIC scoring of Pelleg et al. (2000) if clusters are balanced

𝑐 = 𝑛𝑐′ , 𝑐 ≠ 𝑐′, and 𝜅𝜏 = 1.

. Test statistic adjustment

In additive noise causal models, HSIC is proposed to draw conclu-
ions about the causal direction (Hu et al., 2018). This test statistic
s, however, designed for situations in which samples are coming from
homogeneous population, and is highly sensitive to departures from

his assumption. Theorem 2 presents the asymptotic distribution of an
djusted empirical HSIC to infer the causal direction in a heterogeneous
ase for a given set of clustered data.

heorem 2. Define HSIC𝑐 = 1
𝑛2𝑐

tr(𝐊𝑐𝐇𝑐𝐋𝑐𝐇𝑐 ) to be the cluster-specific
empirical HSIC statistic. The aggregated test statistic 𝑡 =

∑𝑘
𝑐=1 𝑛𝑐HSIC𝑐

converges in distribution to ∑∞
𝑙=1 𝜆𝑙𝑧

2
𝑙 , where 𝑧𝑙, 𝑙 = 1, 2,… are independent

standard Gaussian random variables and 𝜆𝑙 𝑙 = 1, 2,… are non-negative
constants.

The result of Theorem 2 reduces to the homogeneous case of Gretton
et al. (2005) if 𝑘 = 1. The theoretical quantile of the test statistic 𝑡
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Fig. 7. Top panel: the UN life expectancy dataset is clustered to 𝑘 = 5 using our clustering algorithm. Bottom panel: the density plot of the causal parameters 𝜃𝑖.
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can be calculated using the Gamma basis 𝛼 = 𝜇2

𝜎2
and 𝛽 = 𝜎2

𝜇 with
=

∑𝑘
𝑐=1 𝑛𝑐𝜇𝑐 , 𝜎

2 =
∑𝑘

𝑐=1 𝑛
2
𝑐𝜎

2
𝑐 (Wood, Booth, & Butler, 1993), in

hich 𝜇𝑐 and 𝜎2𝑐 are the cluster-specific theoretical HSIC mean and
ariance. Computing the test statistic 𝑡 is straightforward by clustering
bservations first, using labels to isolate data in the same cluster,
alculate HSIC for each cluster, and then using a weighted average of
SIC to obtain 𝑡.

We performed simulation studies based inspired on real data sets.
ur results shows that the main role of HSIC correction in Theo-

em 2 appear in controlling the type I error probability. Occasionally
t improves the total error (type I error + type II error probabilities).
omputing the corrected HSIC statistic is straightforward given the
lustering labels, i.e. HSIC for each cluster is computed separately and
hen summed up while weighted by the cluster size.

. Application

The Tüebingen cause–effect pairs (Mooij, Peters, Janzing, Zscheis-
hler, & Schölkopf, 2016) is a well-known benchmark in the context of
ausal direction detection.1 The database includes 41 data sets arranged
n 108 pairs (𝑥, 𝑦) with a known causal direction identified for each pair,
ither 𝑥 → 𝑦 or 𝑦 → 𝑥.

.1. Life expectancy data

First we explore the effect of the number of clusters on the test
tatistic for the UN life expectancy data by concatenating pairs 56–63
f Tüebingen cause–effect pairs. Fig. 7 (left panel) shows the scatter
lot of UN data 𝑥: life expectancy versus 𝑦: latitude; note that the true
ausal direction is 𝑦 → 𝑥.

Data are generated from multiple sources, so we expect that data
omogeneity assumption fail to hold. The scatter plot in Fig. 7 confirms
his visually.

We compute the causal parameters by maximizing the log likelihood
3) with 𝜆 = 50 given the true causal direction 𝑦 → 𝑥. The test

statistic without adjustment is 14.90 and its theoretical 5% quantile
is 0.60, so it mistakenly rejects the null. The statistic after adjustment
using clustering labels with 𝑘 = 2, 3, 4 still rejects the true direction
ut with a larger 𝑝-value. This is aligned with our observation in the
imulated mixture example in Fig. 3 (left panel), i.e. for a large number
f components the type I error is more affected, and we expect to see
he effect of test statistic correction specially for large 𝑘.

In this example 𝑘 = 5 gives the adjusted test statistic 𝑡 = 1.73
with the 5% theoretical quantile 2.21, so infers the causal direction
correctly. The direction is inferred correctly also for 𝑘 ≥ 6. Our
lustering algorithm estimated 7 clusters.

1 https://webdav.tuebingen.mpg.de/cause--effect/.
6

Fig. 8. Boxplot of type I error probability of Tüebingen cause–effect pairs unadjusted
(left) versus adjusted (right). The nominal type I error remains on average around the
nominal value 0.05 after adjustment.

5.2. Multiple cause–effect pairs

Next we check the performance of our method on all data pairs as
well. Following Hu et al. (2018) we exclude pairs 12, 17, 47, 52, 53, 54,
55, 70, 71, 101, and 105. Additionally we excluded pairs 73, 106, and
68 that include outliers. Data that contain outliers violate the Gaussian
error assumption and treating outliers is a common practice in smooth
modelling. Outliers trouble our clustering method as the clustering
algorithm relies on Gaussian assumption. As a consequence, outliers
yielded singleton clusters on data sets 73,106, and 68 that troubled the
computation of the cluster specific test statistic numerically. Overall,
too much deviation for the Gaussian distributional assumption may
lead to inaccurate causal inference direction test and may require
special treatment.

We sample 90 data from each pair and repeat this process 50 times
independently. Then we estimate the causal parameters by maximizing
the log likelihood (3) with 𝜆 = 50 for 𝑥 → 𝑦 and 𝑦 → 𝑥 directions.
We choose 𝑘 = 𝐾 ± 2 with a visually appealing 2 ≤ 𝐾 ≤ 6 for each
data set. We used the clustering labels to adjust the HSIC statistic

hile running our clustering algorithm. Fig. 8 shows the boxplot of
ype I error. The total error probability (type I error + type II error)
emain equal. Theoretically the type I error probability must remain
nder control at about the significance level. However, the mean of
ype I error probability for unadjusted statistic is 0.796 while using
he adjusted method it is 0.048. The latter preserved the nominal type
rror probability 0.05. We see a similar behaviour in the simulated toy
xample of Fig. 3 in which the type I error probability is exceedingly
igher than the nominal value for large number of components 𝑘.

.3. Disease symptom data

We analyse the stroke subset of verbal autopsy survey (Murray
t al., 2011) benchmark data available in openVA R package. Stroke
easures 27 cause and symptoms ranging from vague symptoms such

s ill to specific symptoms such as vomit. Inference about the association

https://webdav.tuebingen.mpg.de/cause--effect/
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Fig. 9. Causal direction for different clusters, homogeneous case with a single cluster 𝑘 = 1 (left panel), heterogeneous case with two clusters 𝑘 = 2 (middle panel), and with three
clusters 𝑘 = 3 (right panel). Edges tend to weaken by increasing 𝑘. In 𝑘 = 3, some edges disappear, and a directed edge is reversed.
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etween variables are made using the spike and slab model of Li, Mc-
ormick, and Clark (2019) which only discovers important associations
etween variables. In contrast, our method can enhance the analysis
urther by finding the causal direction between the dependent variables
ith or without the homogeneity assumption, i.e. 𝑘 = 1 or 𝑘 > 1.
catter plot of data pairs clearly indicates that homogeneity is not a
iable assumption. Fig. 9 confirms the inferred direction depends on
he number of clusters.

. Conclusion

We showed that heterogeneity can severely affect causal direction
nference. In fact, the distribution of the test statistic deviates from the
heoretical distribution obtained under the homogeneity assumption.
his deviation considerably affects the type I error probability. The
SIC test statistic used in causal direction identification relies heavily
n the homogeneity assumption. It requires proper adjustment using
lustering labels when there are reasons to believe that homogeneity
ssumption is not tenable. To adjust this test statistic, we first de-
eloped a clustering method in the context of additive noise models
hat allows flexible number of clusters. We then used the estimated
lustering labels to adjust the test statistic of causal direction for hetero-
eneous data.Our work can be distinguished from the Hu et al. (2018)
n two directions (i) the causal model includes more parameters and
ncorporates the clustering labels, compare Fig. 5 with Hu et al. (2018,
igure 2), (ii) the causal direction test statistic is adjusted while Hu
t al. (2018) only proposes the mixture model without adjusting the
est statistic.

It is well-known in hypothesis testing that type I error and type II
rror work in opposite direction, e.g. decreasing type I error leads to
n increase in type II error. For instance, in likelihood ratio tests for
omposite hypotheses 𝛼 + 𝛽 ≤ 1. Total error improves only in a local
eighbourhood of the null hypothesis only if the sample size increases.
ur method adjusts type I error probability while keeping the total
rror in the same order. In some of our experiments it even improves
he total error so this adjustment builds an empirically more efficient
est. The unadjusted HSIC test has a wrong asymptotic distribution
hen homogeneity assumption fails to hold. This is why, the type I
rror deviates from its nominal level.

To implement our proposed clustering algorithm we assumed that
and 𝛥 are known. This assumption was only made to facilitate

omputation. The method, however, works for any value of 𝐾 and 𝛥.
his restriction can be relaxed by setting 𝐾 − 𝛥 = 1, 𝐾 + 𝛥 = 𝑁 if the
omputational power allows. This modification makes the clustering
lgorithm (𝑁3).
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Appendix

Proof of Theorem 1. The proof is a multi-stage Gibbs sampler adap-
tation for the clustering case with varying cluster components. First
we ensure that sampling from the discrete multivariate posterior 𝑝(𝐳 ∣
𝝁,𝜽, 𝑘) and continuous multivariate 𝑝(𝝁 ∣ 𝐳,𝜽, 𝑘) converges to the joint
𝑝(𝝁, 𝐳 ∣ 𝜽, 𝑘). Note that 𝑝(𝝁 ∣ 𝜽, 𝐳, 𝑘) is multivariate Gaussian and
(𝐳 ∣ 𝜽,𝝁, 𝑘) is discrete with support {1,… , 𝑘}𝑁 . Define the positive
arkov transition kernel

(𝐳 ∣ 𝐳′) = ∫ ⋯∫ 𝑝(𝐳 ∣ 𝝁,𝜽, 𝑘)𝑝(𝝁 ∣ 𝐳′,𝜽, 𝑘)𝑑𝝁.

his transition kernel is equivalent to taking intermediate samples from
𝑡 ∼ 𝑝(𝝁 ∣ 𝐳𝑡−1,𝜽, 𝑘) at iteration 𝑡 and drawing 𝐳𝑡 ∼ 𝑝(𝐳 ∣ 𝝁𝑡,𝜽, 𝑘).

It is easy to check that 𝑘(𝐳 ∣ 𝐳′) is reversible and hence invariant
ith respect to the marginal 𝑝(𝐳 ∣ 𝜽, 𝑘).

Now suppose we sample from the multivariate 𝑝(𝐳 ∣ 𝝁,𝜽, 𝑘) using
nivariate multinomial samplers. Let 𝑘1(𝐳 ∣ 𝐳′) be the transition kernel
f a univariate Gibbs sampler of 𝑝(𝐳 ∣ 𝝁,𝜽, 𝑘) in increasing order
1,… , 𝑧𝑁 , i.e.

1(𝐳 ∣ 𝐳′) = 𝑝(𝑧′1 ∣ 𝑧2,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)

× 𝑝(𝑧′2, ∣ 𝑧
′
1, 𝑧3,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)⋯ 𝑝(𝑧′𝑁 ∣ 𝑧′1,… , 𝑧′𝑁−1,𝝁,𝜽, 𝑘)

∑

𝑧1 ,…,𝑧𝑛

𝑘1(𝐳 ∣ 𝐳′)𝑝(𝐳 ∣ 𝝁,𝜽, 𝑘)

∑

𝑧1 ,…,𝑧𝑛

𝑝(𝑧′1 ∣ 𝑧2,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)⋯ 𝑝(𝑧′𝑁 ∣ 𝑧′1,… , 𝑧′𝑁−1,𝝁,𝜽, 𝑘)

𝑝(𝑧1 ∣ 𝑧2,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)𝑝(𝑧2,… , 𝑧𝑁 ∣ 𝝁,𝜽, 𝑘)
∑

𝑧2 ,…,𝑧𝑛

𝑝(𝑧′2 ∣ 𝑧
′
1,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)

× 𝑝(𝑧′𝑛 ∣ 𝑧
′
1,… , 𝑧′𝑁−1,𝝁,𝜽, 𝑘)𝑝(𝑧

′
1, 𝑧2,… , 𝑧𝑁 )

n which we integrated over 𝑧1 and decomposed

(𝑧′1, 𝑧2,… , 𝑧𝑁 ∣ 𝝁,𝜽, 𝑘) = 𝑝(𝑧′1 ∣ 𝑧2,… , 𝑧𝑁 ,𝝁,𝜽, 𝑘)𝑝(𝑧2,… , 𝑧𝑁 ∣ 𝝁,𝜽).

ontinue by decomposing

(𝑧′1, 𝑧2,… , 𝑧𝑁 ∣ 𝝁,𝜽, 𝑘) = 𝑝(𝑧2 ∣ 𝑧′1, 𝑧3,… , 𝑧𝑁 ∣ 𝝁,𝜽, 𝑘)

× 𝑝(𝑧′1, 𝑧3,… , 𝑧𝑁 ∣ 𝝁,𝜽, 𝑘)

nd summing over 𝑧2. Repeating this re-arranging and summing over
3,… , 𝑧𝑁 ends up with 𝑝(𝑧′1,… , 𝑧′𝑁 ∣ 𝝁,𝜽, 𝑘) = 𝑝(𝐳′ ∣ 𝝁,𝜽, 𝑘).

A similar argument applies to 𝝁𝑡 ∼ 𝑝(𝝁 ∣ 𝐳,𝜽) to replace the
ntermediate sampler with univariate conditional samplers and to show

(𝝁′ ∣ 𝐳,𝜽) = ⋯ 𝑘2(𝝁 ∣ 𝝁′)𝑝(𝝁 ∣ 𝐳,𝜽)𝑑𝝁
∫ ∫
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in which

𝑘2(𝝁 ∣ 𝝁′) = 𝑝(𝜇′
1 ∣ 𝜇2,… , 𝜇𝑐 , 𝐳,𝜽)

× 𝑝(𝜇′
2 ∣ 𝜇

′
1, 𝜇3,… , 𝜇𝑐 , 𝐳,𝜽)⋯ 𝑝(𝜇′

𝑐 ∣ 𝜇
′
1,… , 𝜇′

𝑐−1).

Simple posterior calculations show these univariate distributions that
construct the kernel 𝑘1 are multinomial 𝑧𝑖 ∼ (1,𝝅𝑖) with probabilities

𝝅𝑖 =

⎡

⎢

⎢

⎢

⎣

𝜙
(

𝜃𝑖−𝜇1
𝜎

)

∑𝑘
𝑐=1 𝜙

(

𝜃𝑖−𝜇𝑐
𝜎

) ,… ,
𝜙
(

𝜃𝑖−𝜇𝑐
𝜎

)

∑𝑘
𝑐=1 𝜙

(

𝜃𝑖−𝜇𝑐
𝜎

)

⎤

⎥

⎥

⎥

⎦

,

nd the intermediate univariate samplers are Gaussian with mean 𝜃̄𝑐 (1+
1

𝑁𝑐𝜅𝜏2
)−1 and variance 𝜎2(𝑁𝑐 +

1
𝜅𝜏2

)−1. The label update step has 𝑘1 and
the mean update has 𝑘2 transition kernel. Implementing these two steps
sequentially is equivalent to a chain with the composition transition
kernel 𝑘1◦𝑘2. The last step is to margin over the cluster components 𝑘.

Assume a discrete uniform prior on 𝑘 ∈ {𝐾 −𝛥,𝐾 +𝛥} which allows
to define a posterior proportional to the likelihood. Note that 𝑘 does not
ffect the dimension of the marginalized posterior 𝑝(𝐳 ∣ 𝜽, 𝑘), otherwise

trans-dimensional samplers need to be developed. Marginalizing over
𝑘 adds another step to the algorithm and implies sampling 𝑘 ∼ (1,𝝅)
in which

𝝅 =

[

exp{𝓁(𝐳 ∣ 𝜽, 𝑘 = 𝐾 − 𝛥)}
∑𝐾+𝛥

𝑘=𝐾−𝛥 exp{𝓁(𝐳 ∣ 𝜽, 𝑘)}
,… ,

exp{𝓁(𝐳 ∣ 𝜽, 𝑘 = 𝐾 − 𝛥)}
∑𝐾+𝛥

𝑘=𝐾−𝛥 exp{𝓁(𝐳 ∣ 𝜽, 𝑘)}

]

. ■

Proof of Theorem 2. The product partition model (6) imposes mutu-
ally independent random pairs (𝑥𝑖, 𝑦𝑖) across clusters. Therefore, given a
certain causal direction their projections 𝜃𝑖 = 𝑔(𝑥𝑖, 𝑦𝑖) are independent
across clusters too. A similar argument holds for HSIC as a function
of 𝜃𝑖. This allows us to use the asymptotic results of the homogeneous
case (Gretton, Bousquet, Smola and Schölkopf, 2005) in each cluster 𝑐
nd combine them using a product partition independence assumption.

For large 𝑛𝑐 inside cluster 𝑐

𝑐HSIC𝑐 ∼
∞
∑

𝑙=1
𝜆𝑙𝑧

2
𝑙 ≈ 𝛤 (𝛼, 𝛽)

n which 𝜆𝑙 are constants and 𝑧𝑙 are independent standard Gaussian
andom variables with 𝜇𝑐 = E(HSIC𝑐 ), 𝜎2𝑐 = V(HSIC𝑐 ). Define the
ggregated test statistic

=
𝑘
∑

𝑐=1
𝑛𝑐HSIC𝑐 =

𝑘
∑

𝑐=1

∞
∑

𝑙=1
𝜆𝑐𝑙𝑧

2
𝑐𝑙

hich is clearly another countable sum ∑∞
𝑚=1 𝛾𝑚𝑤

2
𝑚 after swapping the

um order and re-arranging terms 𝑚 = (𝑙 − 1)𝑘 + 𝑐. ■
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