<  Retour au portail Polytechnique Montréal

Building energy model calibration using a surrogate neural network

Florent Herbinger, Colin Vandenhof et Michaël Kummert

Article de revue (2023)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Energy studies of buildings are becoming more widespread as stakeholders strive to improve energy efficiency and reduce carbon emissions. As a result, there is an increased need for novel numerical techniques to automatically calibrate building energy models (BEMs) for these energy studies. In this paper, a new automated building calibration methodology was developed, which uses a surrogate (i.e., meta) multilayer perceptron artificial neural network (ANN) to infer unknown building parameters. Typically, in the field of BEM calibration, surrogate models are used as a time-saving technique. Instead of running the building simulation software during each iteration of an optimization search, a surrogate model can approximate the output of the BEM very quickly, leading to much faster optimization of the unknown building parameters. However, we show that, once trained, the surrogate model itself can be used to find the unknown building parameters. Since the surrogate model is differentiable, gradient descent can be used to find the building parameters that minimize the error between true and predicted metered energy consumption. Previous surrogate modeling approaches for calibrating BEMs map only the unknown building parameters to the BEM’s output. As a result, they are blind to the effects of other crucial variables like weather and the building’s schedules. On the other hand, our surrogate ANN model accounts for these other predictors of energy consumption. With this advantage, our method was able to outperform a powerful black box optimizer when finding 14 unknown building parameter values in a controlled case study with hourly energy data. In a real metered data case study, our ANN method and the black box optimizer performed similarly on average, but our method had less variance in performance across trials.

Mots clés

Département: Département de génie mécanique
Organismes subventionnaires: CRSNG/NSERC, Arbour Foundation, Fondation et alumni de Polytechnique Montréal, Hydro-Québec
URL de PolyPublie: https://publications.polymtl.ca/53703/
Titre de la revue: Energy and Buildings (vol. 289)
Maison d'édition: Elsevier
DOI: 10.1016/j.enbuild.2023.113057
URL officielle: https://doi.org/10.1016/j.enbuild.2023.113057
Date du dépôt: 10 juil. 2023 16:30
Dernière modification: 12 août 2025 12:32
Citer en APA 7: Herbinger, F., Vandenhof, C., & Kummert, M. (2023). Building energy model calibration using a surrogate neural network. Energy and Buildings, 289, 113057 (15 pages). https://doi.org/10.1016/j.enbuild.2023.113057

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document