<  Retour au portail Polytechnique Montréal

Artificial intelligence to predict outcomes of head and neck radiotherapy

Chulmin Bang, Galaad Bernard, William Trung Le, Arthur Lalonde, Samuel Kadoury et Houda Bahig

Article de revue (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Head and neck radiotherapy induces important toxicity, and its efficacy and tolerance vary widely across patients. Advancements in radiotherapy delivery techniques, along with the increased quality and frequency of image guidance, offer a unique opportunity to individualize radiotherapy based on imaging biomarkers, with the aim of improving radiation efficacy while reducing its toxicity. Various artificial intelligence models integrating clinical data and radiomics have shown encouraging results for toxicity and cancer control outcomes prediction in head and neck cancer radiotherapy. Clinical implementation of these models could lead to individualized risk-based therapeutic decision making, but the reliability of the current studies is limited. Understanding, validating and expanding these models to larger multi-institutional data sets and testing them in the context of clinical trials is needed to ensure safe clinical implementation. This review summarizes the current state of the art of machine learning models for prediction of head and neck cancer radiotherapy outcomes.

Mots clés

Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/53528/
Titre de la revue: Clinical and Translational Radiation Oncology (vol. 39)
Maison d'édition: Elsevier
DOI: 10.1016/j.ctro.2023.100590
URL officielle: https://doi.org/10.1016/j.ctro.2023.100590
Date du dépôt: 10 juil. 2023 16:30
Dernière modification: 23 oct. 2025 17:02
Citer en APA 7: Bang, C., Bernard, G., Le, W. T., Lalonde, A., Kadoury, S., & Bahig, H. (2023). Artificial intelligence to predict outcomes of head and neck radiotherapy. Clinical and Translational Radiation Oncology, 39, 100590 (9 pages). https://doi.org/10.1016/j.ctro.2023.100590

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document