Saeed Yousefi, Hadi Shabanpour, Kian Ghods and Reza Farzipoor Saen
Article (2023)
An external link is available for this itemDepartment: | Department of Mathematics and Industrial Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/53306/ |
Journal Title: | Computers & Industrial Engineering (vol. 176) |
Publisher: | Elsevier |
DOI: | 10.1016/j.cie.2022.108933 |
Official URL: | https://doi.org/10.1016/j.cie.2022.108933 |
Date Deposited: | 18 Apr 2023 14:58 |
Last Modified: | 08 Apr 2025 07:22 |
Cite in APA 7: | Yousefi, S., Shabanpour, H., Ghods, K., & Saen, R. F. (2023). How to improve the future efficiency of Covid-19 treatment centers? A hybrid framework combining artificial neural network and congestion approach of data envelopment analysis. Computers & Industrial Engineering, 176, 108933 (11 pages). https://doi.org/10.1016/j.cie.2022.108933 |
---|---|
Statistics
Dimensions