Lin Shi, Defeng Wang, Mark Driscoll, Isabelle Villemure, Winnie C. Chu, Jack C. Cheng and Carl-Éric Aubin
Article (2011)
Open Acess document in PolyPublie and at official publisher |
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Download (866kB) |
Abstract
BACKGROUND: The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine. METHODS: A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared. RESULTS: (1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects. CONCLUSION: Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.
Department: | Department of Mechanical Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/5136/ |
Journal Title: | Scoliosis (vol. 6, no. 1) |
Publisher: | Springer Nature |
DOI: | 10.1186/1748-7161-6-11 |
Official URL: | https://doi.org/10.1186/1748-7161-6-11 |
Date Deposited: | 05 Apr 2022 14:47 |
Last Modified: | 28 Sep 2024 17:14 |
Cite in APA 7: | Shi, L., Wang, D., Driscoll, M., Villemure, I., Chu, W. C., Cheng, J. C., & Aubin, C.-É. (2011). Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis, 6(1), 11. https://doi.org/10.1186/1748-7161-6-11 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions