Serge Prudhomme et Corey M. Bryant
Article de revue (2015)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves
Mots clés
Goal-oriented error estimation; Adjoint problem; Turbulence modeling; Spalart–Allmaras model; Parameter identification
Sujet(s): | 2950 Mathématiques appliquées > 2960 Modélisation mathématique |
---|---|
Département: | Département de mathématiques et de génie industriel |
Organismes subventionnaires: | CRSNG/NSERC, KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering, Department of Energy [National Nuclear Security Administration] |
Numéro de subvention: | DE-FC52-08NA28615 |
URL de PolyPublie: | https://publications.polymtl.ca/5097/ |
Titre de la revue: | Advanced Modeling and Simulation in Engineering Sciences (vol. 2, no 1) |
Maison d'édition: | Springer |
DOI: | 10.1186/s40323-015-0045-5 |
URL officielle: | https://doi.org/10.1186/s40323-015-0045-5 |
Date du dépôt: | 16 févr. 2023 15:18 |
Dernière modification: | 28 sept. 2024 08:53 |
Citer en APA 7: | Prudhomme, S., & Bryant, C. M. (2015). Adaptive surrogate modeling for response surface approximations with application to bayesian inference. Advanced Modeling and Simulation in Engineering Sciences, 2(1), 22. https://doi.org/10.1186/s40323-015-0045-5 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions