<  Back to the Polytechnique Montréal portal

Contextual anomaly detection on time series: a case study of metro ridership analysis

Kevin Pasini, Mostepha Khouadjia, Allou Same, Martin Trépanier and Latifa Oukhellou

Article (2022)

An external link is available for this item
Department: Department of Mathematics and Industrial Engineering
Research Center: CIRRELT - Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
PolyPublie URL: https://publications.polymtl.ca/50019/
Journal Title: Neural Computing and Applications (vol. 34, no. 2)
Publisher: Springer Science and Business Media Deutschland GmbH
DOI: 10.1007/s00521-021-06455-z
Official URL: https://doi.org/10.1007/s00521-021-06455-z
Date Deposited: 18 Apr 2023 14:59
Last Modified: 25 Sep 2024 16:39
Cite in APA 7: Pasini, K., Khouadjia, M., Same, A., Trépanier, M., & Oukhellou, L. (2022). Contextual anomaly detection on time series: a case study of metro ridership analysis. Neural Computing and Applications, 34(2), 1483-1507. https://doi.org/10.1007/s00521-021-06455-z

Statistics

Dimensions

Repository Staff Only

View Item View Item