Václav Klika, Michal Pavelka, Petr Vágner et Miroslav Grmela
Article de revue (2019)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (401kB) |
Abstract
Any physical system can be regarded on different levels of description varying by how detailed the description is. We propose a method called Dynamic MaxEnt (DynMaxEnt) that provides a passage from the more detailed evolution equations to equations for the less detailed state variables. The method is based on explicit recognition of the state and conjugate variables, which can relax towards the respective quasi-equilibria in different ways. Detailed state variables are reduced using the usual principle of maximum entropy (MaxEnt), whereas relaxation of conjugate variables guarantees that the reduced equations are closed. Moreover, an infinite chain of consecutive DynMaxEnt approximations can be constructed. The method is demonstrated on a particle with friction, complex fluids (equipped with conformation and Reynolds stress tensors), hyperbolic heat conduction and magnetohydrodynamics.
Mots clés
model reduction; non-equilibrium thermodynamics; maxent; dynamic maxent; complex fluids; heat conduction; ohm's law; 1st-order hyperbolic formulation; order ader schemes; continuum-mechanics; poisson brackets; complex fluids; thermodynamics; geometry; lie
Sujet(s): |
1800 Génie chimique > 1803 Thermodynamique 1800 Génie chimique > 1805 Procédés de transfert |
---|---|
Département: | Département de génie chimique |
Organismes subventionnaires: | Czech Science Foundation, Charles University Research program, CRSNG/NSERC |
Numéro de subvention: | 17-15498Y, UNCE/SCI/023, 3100319, 3100735 |
URL de PolyPublie: | https://publications.polymtl.ca/4974/ |
Titre de la revue: | Entropy (vol. 21, no 7) |
Maison d'édition: | MDPI |
DOI: | 10.3390/e21070715 |
URL officielle: | https://doi.org/10.3390/e21070715 |
Date du dépôt: | 03 juin 2022 15:42 |
Dernière modification: | 26 sept. 2024 11:01 |
Citer en APA 7: | Klika, V., Pavelka, M., Vágner, P., & Grmela, M. (2019). Dynamic maximum entropy reduction. Entropy, 21(7), 715 (27 pages). https://doi.org/10.3390/e21070715 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions