<  Retour au portail Polytechnique Montréal

Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method

Mohsen Khorasany, Yateendra Mishra, Behrouz Babaki et Gerard Ledwich

Article de revue (2019)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (643kB)
Afficher le résumé
Cacher le résumé

Abstract

This paper proposes an adaptive segmentation method as a market clearing mechanism for peer-to-peer (P2P) energy trading scheme with large number of market players. In the proposed method, market players participate in the market by announcing their bids. In the first step, players are assigned to different segments based on their features, where the balanced k-means clustering method is implemented to form segments. These segments are formed based on the similarity between players, where the amount of energy for trade and its corresponding price are considered as features of players. In the next step, a distributed method is employed to clear the market in each segment without any need to private information of players. The novelty of this paper relies on developing an adaptive algorithm for dividing large number of market players into multiple segments to enhance scalability of the P2P trading by reducing data exchange and communication overheads. The proposed approach can be used along with any distributed method for market clearing. In this paper, two different structures including community-based market and decentralized bilateral trading market are used to demonstrate the efficacy of the proposed method. Simulation results show the beneficial properties of the proposed segmentation method.

Mots clés

Energy trading; Market segmentation; Distributed optimization; Peer-to-peer market; Alternating direction method of multipliers

Sujet(s): 2500 Génie électrique et électronique > 2501 Réseaux électriques
2950 Mathématiques appliquées > 2956 Optimisation et théories de commande optimale
Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/4972/
Titre de la revue: Journal of Modern Power Systems and Clean Energy (vol. 7, no 4)
Maison d'édition: Springer Nature
DOI: 10.1007/s40565-019-0510-0
URL officielle: https://doi.org/10.1007/s40565-019-0510-0
Date du dépôt: 04 juil. 2022 16:13
Dernière modification: 26 sept. 2024 11:03
Citer en APA 7: Khorasany, M., Mishra, Y., Babaki, B., & Ledwich, G. (2019). Enhancing scalability of peer-to-peer energy markets using adaptive segmentation method. Journal of Modern Power Systems and Clean Energy, 7(4), 791-801. https://doi.org/10.1007/s40565-019-0510-0

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document