<  Retour au portail Polytechnique Montréal

Highly tensile-strained Ge/InAlAs nanocomposites

Daehwan Jung, Joseph Faucher, Samik Mukherjee, Austin Akey, Daniel J. Ironside, Matthew Cabral, Xiahan Sang, James Lebeau, Seth R. Bank, Tonio Buonassisi, Oussama Moutanabbir et Minjoo Larry Lee

Article de revue (2017)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (784kB)
Afficher le résumé
Cacher le résumé

Abstract

Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

Département: Département de génie physique
Organismes subventionnaires: National Science Foundation, Division of Materials Reserch, Dubinsky New Research Initiative, NSERC/CRSNG, Canada Research Chairs / Chaires de recherche du Canada, Canada Foundation for Innovation / Fondation canadienne pour l'innovation (CFI), Bay Area Photovoltaic Consortium, Air Force Office of Scientific Research
Numéro de subvention: NSF DMR 1506371, AFOSR MURI Award No. FA9550-12-1-0488), NSF DMR 1508603
URL de PolyPublie: https://publications.polymtl.ca/4959/
Titre de la revue: Nature Communications (vol. 8, no 1)
Maison d'édition: Nature Research
DOI: 10.1038/ncomms14204
URL officielle: https://doi.org/10.1038/ncomms14204
Date du dépôt: 17 déc. 2021 10:45
Dernière modification: 27 sept. 2024 22:58
Citer en APA 7: Jung, D., Faucher, J., Mukherjee, S., Akey, A., Ironside, D. J., Cabral, M., Sang, X., Lebeau, J., Bank, S. R., Buonassisi, T., Moutanabbir, O., & Lee, M. L. (2017). Highly tensile-strained Ge/InAlAs nanocomposites. Nature Communications, 8(1), 14204 (7 pages). https://doi.org/10.1038/ncomms14204

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document