Carlos-Emiliano González-Gallardo, Elvys Linhares Pontes, Fatiha Sadat et Juan-Manuel Torres-Moreno
Article de revue (2018)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (391kB) |
Abstract
The increased volumes of Arabic sources of data available on the Web has boosted the development of Natural Language Processing (NLP) tools over different tasks and applications. However, to take advantage from a vast amount of these applications, a prior segmentation task call Sentence Boundary Detection (SBD) is needed. In this paper we focus on SBD over Modern Standard Arabic (MSA) by comparing two different approaches based on Deep Neural Networks (DNN) using out-of-domain and in-domain training data with only lexical features (represented as character embedding) while conducting two scenarios based on a Convolutional Neural Network and a Recurrent Neural Network with attention mechanism architectures. While tuning a big out-of-domain dataset with a smaller in-domain dataset, improves the performance in general. Our evaluations were based on IWSLT 2017 TED talks transcripts and showed similarities and differences depending of the SBD method. MSA carries certain complications given its rich and complex morphology. However, using only lexical features for Arabic SBD is an acceptable option when the source audio signal is not available and a certain level of language independence needs to be reached.
Mots clés
Sentence Boundary Detection; Speech-to-Text; Transcription; Modern Standard Arabic; Deep Neural Networks
Sujet(s): | 2800 Intelligence artificielle > 2801 Langage naturel et reconnaissance de la parole |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | Access Multilingual Information opinionS (AMIS) project. |
Numéro de subvention: | CHISTERA-AMIS ANR-15-CHR2-0001 |
URL de PolyPublie: | https://publications.polymtl.ca/4899/ |
Titre de la revue: | Procedia Computer Science (vol. 142) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.procs.2018.10.485 |
URL officielle: | https://doi.org/10.1016/j.procs.2018.10.485 |
Date du dépôt: | 19 déc. 2022 14:08 |
Dernière modification: | 28 sept. 2024 18:28 |
Citer en APA 7: | González-Gallardo, C.-E., Pontes, E. L., Sadat, F., & Torres-Moreno, J.-M. (2018). Automated sentence boundary detection in modern standard arabic transcripts using deep neural networks. Procedia Computer Science, 142, 339-346. https://doi.org/10.1016/j.procs.2018.10.485 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions