Muhammad Jamil Khan, MuhibUr Rahman, Yasar Amin et Hannu Tenhunen
Article de revue (2019)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (667kB) |
Abstract
Kernel correlation filters (KCF) demonstrate significant potential in visual object tracking by employing robust descriptors. Proper selection of color and texture features can provide robustness against appearance variations. However, the use of multiple descriptors would lead to a considerable feature dimension. In this paper, we propose a novel low-rank descriptor, that provides better precision and success rate in comparison to state-of-the-art trackers. We accomplished this by concatenating the magnitude component of the Overlapped Multi-oriented Tri-scale Local Binary Pattern (OMTLBP), Robustness-Driven Hybrid Descriptor (RDHD), Histogram of Oriented Gradients (HoG), and Color Naming (CN) features. We reduced the rank of our proposed multi-channel feature to diminish the computational complexity. We formulated the Support Vector Machine (SVM) model by utilizing the circulant matrix of our proposed feature vector in the kernel correlation filter. The use of discrete Fourier transform in the iterative learning of SVM reduced the computational complexity of our proposed visual tracking algorithm. Extensive experimental results on Visual Tracker Benchmark dataset show better accuracy in comparison to other state-of-the-art trackers.
Mots clés
circulant matrix; texture; tracking; convolution; filter
Sujet(s): | 2500 Génie électrique et électronique > 2500 Génie électrique et électronique |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | Higher Education Commission (HEC) of Pakistan - Technology Development Fund, ASR&TD-UETT faculty research grant |
Numéro de subvention: | TDF-67/2017 |
URL de PolyPublie: | https://publications.polymtl.ca/4865/ |
Titre de la revue: | Symmetry (vol. 11, no 9) |
Maison d'édition: | MDPI |
DOI: | 10.3390/sym11091155 |
URL officielle: | https://doi.org/10.3390/sym11091155 |
Date du dépôt: | 16 août 2021 13:18 |
Dernière modification: | 28 sept. 2024 08:13 |
Citer en APA 7: | Jamil Khan, M., Rahman, M.U., Amin, Y., & Tenhunen, H. (2019). Low-rank multi-channel features for robust visual object tracking. Symmetry, 11(9). https://doi.org/10.3390/sym11091155 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions