<  Retour au portail Polytechnique Montréal

A Novel Data-Driven Fault Tree Methodology for Fault Diagnosis and Prognosis

Kerelous Refaat Latef Waghen

Thèse de doctorat (2020)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Conditions d'utilisation: Tous droits réservés
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Résumé

La thèse développe une nouvelle méthodologie de diagnostic et de pronostic de défauts dans un système complexe, nommée Interpretable logic tree analysis (ILTA), qui combine les techniques d'extraction de connaissances à partir des bases de données « knowledge discovery in database (KDD) » et l'analyse d'arbre de défaut « fault tree analysis (FTA) ». La méthodologie capitalise les avantages des deux techniques pour appréhender la problématique de diagnostic et de pronostic de défauts. Bien que les arbres de défauts offrent des modèles interprétables pour déterminer les causes possibles à l'origine d'un défaut, leur utilisation pour le diagnostic de défauts dans un système industriel est limitée, en raison de la nécessité de faire appel à des connaissances expertes pour décrire les relations de cause-à-effet entre les processus internes du système. Cependant, il sera intéressant d'exploiter la puissance d'analyse des arbres de défaut mais construit à partir des connaissances explicites et non biaisées extraites directement des bases de données sur la causalité des fautes. Par conséquent, la méthodologie ILTA fonctionne de manière analogue à la logique du modèle d'analyse d'arbre de défaut (FTA) mais avec une implication minimale des experts. Cette approche de modélisation doit rejoindre la logique des experts pour représenter la structure hiérarchique des défauts dans un système complexe. La méthodologie ILTA est appliquée à la gestion des risques de défaillance en fournissant deux modèles d'arborescence avancés interprétables à plusieurs niveaux (MILTA) et au cours du temps (ITCA). Le modèle MILTA est conçu pour accomplir la tâche de diagnostic de défaillance dans les systèmes complexes. Il est capable de décomposer un défaut complexe et de modéliser graphiquement sa structure de causalité dans un arbre à plusieurs niveaux. Par conséquent, un expert est en mesure de visualiser l'influence des relations hiérarchiques de cause à effet menant à la défaillance principale. De plus, quantifier ces causes en attribuant des probabilités aide à comprendre leur contribution dans l'occurrence de la défaillance du système. Le modèle ITCA est conçu pour réaliser la tâche de pronostic de défaillance dans les systèmes complexes. Basé sur une répartition des données au cours du temps, le modèle ITCA capture l'effet du vieillissement du système à travers de l'évolution de la structure de causalité des fautes. Ainsi, il décrit les changements de causalité résultant de la détérioration et du vieillissement au cours de la vie du système.

Abstract

The thesis develops a new methodology for diagnosis and prognosis of faults in a complex system, called Interpretable logic tree analysis (ILTA), which combines knowledge extraction techniques from knowledge discovery in databases (KDD) and the fault tree analysis (FTA). The methodology combined the advantages of the both techniques for understanding the problem of diagnosis and prognosis of faults. Although fault trees provide interpretable models for determining the possible causes of a fault, its use for fault diagnosis in an industrial system is limited, due to the need for expert knowledge to describe cause-and-effect relationships between internal system processes. However, it will be interesting to exploit the analytical power of fault trees but built from explicit and unbiased knowledge extracted directly from databases on the causality of faults. Therefore, the ILTA methodology works analogously to the logic of the fault tree analysis model (FTA) but with minimal involvement of experts. This modeling approach joins the logic of experts to represent the hierarchical structure of faults in a complex system. The ILTA methodology is applied to failure risk management by providing two interpretable advanced logic models: a multi-level tree (MILTA) and a multilevel tree over time (ITCA). The MILTA model is designed to accomplish the task of diagnosing failure in complex systems. It is able to decompose a complex defect and graphically model its causal structure in a tree on several levels. As a result, an expert is able to visualize the influence of hierarchical cause and effect relationships leading to the main failure. In addition, quantifying these causes by assigning probabilities helps to understand their contribution to the occurrence of system failure. The second model is a logical tree interpretable in time (ITCA), designed to perform the task of prognosis of failure in complex systems. Based on a distribution of data over time, the ITCA model captures the effect of the aging of the system through the evolution of the fault causation structure. Thus, it describes the causal changes resulting from deterioration and aging over the life of the system.

Département: Département de mathématiques et de génie industriel
Programme: Doctorat en génie industriel
Directeurs ou directrices: Mohamed-Salah Ouali
URL de PolyPublie: https://publications.polymtl.ca/4225/
Université/École: Polytechnique Montréal
Date du dépôt: 04 sept. 2020 15:05
Dernière modification: 01 oct. 2024 00:07
Citer en APA 7: Waghen, K. R. L. (2020). A Novel Data-Driven Fault Tree Methodology for Fault Diagnosis and Prognosis [Thèse de doctorat, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/4225/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document