Thèse de doctorat (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Résumé
Les systèmes infonuagiques deviennent de plus en plus complexes, plus dynamiques et hétérogènes. Un tel environnement produit souvent des données complexes et bruitées, empêchant les systèmes de détection d'intrusion (IDS) de détecter des variantes d'attaques connues. Une seule intrusion ou une attaque dans un tel système hétérogène peut se présenter sous des formes différentes, logiquement mais non synthétiquement similaires. Les IDS traditionnels sont incapables d'identifier ces attaques, car ils sont conçus pour des infrastructures spécifiques et limitées. Par conséquent, une détection précise dans le nuage ne sera absolument pas identifiée. Outre le problème de l'infonuagique, les cyber-attaques sont de plus en plus sophistiquées et difficiles à détecter. Il est donc extrêmement compliqué pour un unique IDS d'un nuage de détecter toutes les attaques, en raison de leurs implications, et leurs connaissances limitées et insuffisantes de celles-ci. Les solutions IDS actuelles de l'infonuagique résident dans le fait qu'elles ne tiennent pas compte des aspects dynamiques et hétérogènes de l'infonuagique. En outre, elles s'appuient fondamentalement sur les connaissances et l'expérience locales pour identifier les attaques et les modèles existants. Cela rend le nuage vulnérable aux attaques «Zero-Day». À cette fin, nous résolvons dans cette thèse deux défis associés à l'IDS de l'infonuagique : la détection des cyberattaques dans des environnements complexes, dynamiques et hétérogènes, et la détection des cyberattaques ayant des informations limitées et/ou incomplètes sur les intrusions et leurs conséquences. Dans cette thèse, nous sommes intéressés aux IDS génériques de l'infonuagique afin d'identifier les intrusions qui sont indépendantes de l'infrastructure utilisée. Par conséquent, à chaque fois qu'un pressentiment d'attaque est identifié, le système de détection d'intrusion doit être capable de reconnaître toutes les variantes d'une telle attaque, quelle que soit l'infrastructure utilisée. De plus, les IDS de l'infonuagique coopèrent et échangent des informations afin de faire bénéficier chacun des expertises des autres, pour identifier des modèles d'attaques inconnues.
Abstract
Cloud Computing systems are becoming more and more complex, dynamic and heterogeneous. Such an environment frequently produces complex and noisy data that make Intrusion Detection Systems (IDSs) unable to detect unknown variants of known attacks. A single intrusion or an attack in such a heterogeneous system could take various forms that are logically but not synthetically similar. This, in turn, makes traditional IDSs unable to identify these attacks, since they are designed for specific and limited infrastructures. Therefore, the accuracy of the detection in the cloud will be very negatively affected. In addition to the problem of the cloud computing environment, cyber attacks are getting more sophisticated and harder to detect. Thus, it is becoming increasingly difficult for a single cloud-based IDS to detect all attacks, because of limited and incomplete knowledge about attacks and implications. The problem of the existing cloud-based IDS solutions is that they overlook the dynamic and changing nature of the cloud. Moreover, they are fundamentally based on the local knowledge and experience to perform the classification of attacks and normal patterns. This renders the cloud vulnerable to “Zero-Day” attacks. To this end, we address throughout this thesis two challenges associated with the cloud-based IDS which are: the detection of cyber attacks under complex, dynamic and heterogeneous environments; and the detection of cyber attacks under limited and/or incomplete information about intrusions and implications. We are interested in this thesis in allowing cloud-based IDSs to be generic, in order to identify intrusions regardless of the infrastructure used. Therefore, whenever an intrusion has been identified, an IDS should be able to recognize all the different structures of such an attack, regardless of the infrastructure that is being used. Moreover, we are interested in allowing cloud-based IDSs to cooperate and share knowledge with each other, in order to make them benefit from each other's expertise to cover unknown attack patterns. The originality of this thesis lies within two aspects: 1) the design of a generic cloud-based IDS that allows the detection under changing and heterogeneous environments and 2) the design of a multi-cloud cooperative IDS that ensures trustworthiness, fairness and sustainability. By trustworthiness, we mean that the cloud-based IDS should be able to ensure that it will consult, cooperate and share knowledge with trusted parties (i.e., cloud-based IDSs). By fairness, we mean that the cloud-based IDS should be able to guarantee that mutual benefits will be achieved through minimising the chance of cooperating with selfish IDSs. This is useful to give IDSs the motivation to participate in the community.
Département: | Département de génie informatique et génie logiciel |
---|---|
Programme: | Génie informatique |
Directeurs ou directrices: | Martine Bellaïche et Michel Dagenais |
URL de PolyPublie: | https://publications.polymtl.ca/3714/ |
Université/École: | École Polytechnique de Montréal |
Date du dépôt: | 22 févr. 2019 12:00 |
Dernière modification: | 03 oct. 2024 13:53 |
Citer en APA 7: | Abusitta, A. (2018). Theoretical and Applied Foundations for Intrusion Detection in Single and Federated Clouds [Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/3714/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements