Article de revue (2018)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (225kB) |
Abstract
This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space–time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.
| Département: | Département de génie électrique |
|---|---|
| Organismes subventionnaires: | CRSNG/NSERC |
| URL de PolyPublie: | https://publications.polymtl.ca/3572/ |
| Titre de la revue: | Results in Physics (vol. 9) |
| Maison d'édition: | Elsevier |
| DOI: | 10.1016/j.rinp.2018.02.035 |
| URL officielle: | https://doi.org/10.1016/j.rinp.2018.02.035 |
| Date du dépôt: | 26 mars 2020 16:25 |
| Dernière modification: | 28 sept. 2024 09:19 |
| Citer en APA 7: | Plamondon, R. (2018). General relativity: an erfc metric. Results in Physics, 9, 456-462. https://doi.org/10.1016/j.rinp.2018.02.035 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
