Kayo Gonçalves-e-Silva, Daniel Aloise, Samuel Xavier-de-Souza et Nenad Mladenović
Article de revue (2018)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Partage dans les mêmes conditions (CC BY-NC-SA) Télécharger (318kB) |
Abstract
Nelder-Mead method (NM) for solving continuous non-linear optimization problem is probably the most cited and the most used method in the optimization literature and in practical applications, too. It belongs to the direct search methods, those which do not use the first and the second order derivatives. The popularity of NM is based on its simplicity. In this paper we propose even more simple algorithm for larger instances that follows NM idea. We call it Simplified NM (SNM): instead of generating all n + 1 simplex points in Rn, we perform search using just q + 1 vertices, where q is usually much smaller than n. Though the results cannot be better than after performing calculations in n+1 points as in NM, significant speed-up allows to run many times SNM from different starting solutions, usually getting better results than those obtained by NM within the same cpu time. Computational analysis is performed on 10 classical convex and non-convex instances, where the number of variables n can be arbitrarily large. The obtained results show that SNM is more effective than the original NM, confirming that LIMA yields good results when solving a continuous optimization problem.
Mots clés
continuous optimization; direct search methods; Nelder Mead method; less is more approach
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2715 Optimisation |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | CNPq-Brazil, RSF, NPAD/UFRN |
Numéro de subvention: | 308887/2014-0, 400350/2014-9, 14-41-00039 |
URL de PolyPublie: | https://publications.polymtl.ca/3562/ |
Titre de la revue: | Yugoslav Journal of Operations Research (vol. 28, no 2) |
Maison d'édition: | Faculty of Organizational Sciences, Belgrade, Mihajlo Pupin Institute, Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Faculty of Mining and Geology – Department of Mining, Belgrade, Mathematical Institute SANU, Belgrade |
DOI: | 10.2298/yjor180120014g |
URL officielle: | https://doi.org/10.2298/yjor180120014g |
Date du dépôt: | 27 mars 2020 08:32 |
Dernière modification: | 28 sept. 2024 01:14 |
Citer en APA 7: | Gonçalves-e-Silva, K., Aloise, D., Xavier-de-Souza, S., & Mladenović, N. (2018). Less is more: simplified Nelder-Mead method for large unconstrained optimization. Yugoslav Journal of Operations Research, 28(2), 153-169. https://doi.org/10.2298/yjor180120014g |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions