<  Back to the Polytechnique Montréal portal

Road Traffic Congestion Analysis Via Connected Vehicles

Ranwa Al-Mallah

PhD thesis (2018)

[img] Restricted to: Repository staff only until 18 October 2019.
Cite this document: Al-Mallah, R. (2018). Road Traffic Congestion Analysis Via Connected Vehicles (PhD thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/3250/
Show abstract Hide abstract

Abstract

La congestion routière est un état particulier de mobilité où les temps de déplacement augmentent et de plus en plus de temps est passé dans le véhicule. En plus d’être une expérience très stressante pour les conducteurs, la congestion a également un impact négatif sur l’environnement et l’économie. Dans ce contexte, des pressions sont exercées sur les autorités afin qu’elles prennent des mesures décisives pour améliorer le flot du trafic sur le réseau routier. En améliorant le flot, la congestion est réduite et la durée totale de déplacement des véhicules est réduite. D’une part, la congestion routière peut être récurrente, faisant référence à la congestion qui se produit régulièrement. La congestion non récurrente (NRC), quant à elle, dans un réseau urbain, est principalement causée par des incidents, des zones de construction, des événements spéciaux ou des conditions météorologiques défavorables. Les opérateurs d’infrastructure surveillent le trafic sur le réseau mais sont contraints à utiliser le moins de ressources possibles. Cette contrainte implique que l’état du trafic ne peut pas être mesuré partout car il n’est pas réaliste de déployer des équipements sophistiqués pour assurer la collecte précise des données de trafic et la détection en temps réel des événements partout sur le réseau routier. Alors certains emplacements où le flot de trafic doit être amélioré ne sont pas surveillés car ces emplacements varient beaucoup. D’un autre côté, de nombreuses études sur la congestion routière ont été consacrées aux autoroutes plutôt qu’aux régions urbaines, qui sont pourtant beaucoup plus susceptibles d’être surveillées par les autorités de la circulation. De plus, les systèmes actuels de collecte de données de trafic n’incluent pas la possibilité d’enregistrer des informations détaillées sur les événements qui surviennent sur la route, tels que les collisions, les conditions météorologiques défavorables, etc. Aussi, les études proposées dans la littérature ne font que détecter la congestion ; mais ce n’est pas suffisant, nous devrions être en mesure de mieux caractériser l’événement qui en est la cause. Les agences doivent comprendre quelle est la cause qui affecte la variabilité de flot sur leurs installations et dans quelle mesure elles peuvent prendre les actions appropriées pour atténuer la congestion.----------ABSTRACT: Road traffic congestion is a particular state of mobility where travel times increase and more and more time is spent in vehicles. Apart from being a quite-stressful experience for drivers, congestion also has a negative impact on the environment and the economy. In this context, there is pressure on the authorities to take decisive actions to improve the network traffic flow. By improving network flow, congestion is reduced and the total travel time of vehicles is decreased. In fact, congestion can be classified as recurrent and non-recurrent (NRC). Recurrent congestion refers to congestion that happens on a regular basis. Non-recurrent congestion in an urban network is mainly caused by incidents, workzones, special events and adverse weather. Infrastructure operators monitor traffic on the network while using the least possible resources. Thus, traffic state cannot be directly measured everywhere on the traffic road network. But the location where traffic flow needs to be improved varies highly and certainly, deploying highly sophisticated equipment to ensure the accurate estimation of traffic flows and timely detection of events everywhere on the road network is not feasible. Also, many studies have been devoted to highways rather than highly congested urban regions which are intricate, complex networks and far more likely to be monitored by the traffic authorities. Moreover, current traffic data collection systems do not incorporate the ability of registring detailed information on the altering events happening on the road, such as vehicle crashes, adverse weather, etc. Operators require external data sources to retireve this information in real time. Current methods only detect congestion but it’s not enough, we should be able to better characterize the event causing it. Agencies need to understand what is the cause affecting variability on their facilities and to what degree so that they can take the appropriate action to mitigate congestion.

Open Access document in PolyPublie
Department: Département de génie informatique et génie logiciel
Dissertation/thesis director: Alejandro Quintero and Bilal Farooq
Date Deposited: 18 Oct 2018 13:39
Last Modified: 24 Oct 2018 16:13
PolyPublie URL: https://publications.polymtl.ca/3250/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only