Mémoire de maîtrise (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (2MB) |
Résumé
Ce mémoire s'intéresse à la programmation par contraintes, un paradigme pour résoudre des problèmes combinatoires. Pour la plupart des problèmes, trouver une solution n'est pas possible si on se limite à des mécanismes d'inférence logique; l'exploration d'un espace des solutions à l'aide d'heuristiques de recherche est nécessaire. Des nombreuses heuristiques existantes, les heuristiques de branchement basées sur le dénombrement seront au centre de ce mémoire. Cette approche repose sur l'utilisation d'algorithmes pour estimer le nombre de solutions des contraintes individuelles d'un problème de satisfaction de contraintes. Notre contribution se résume principalement à l'amélioration de deux algorithmes de dénombrement pour les contraintes alldifferent et spanningTree; ces contraintes peuvent exprimer de nombreux problèmes de satisfaction, et sont par le fait même essentielles à nos heuristiques de branchement. Notre travail fait également l'objet d'une contribution à un solveur de programmation par contraintes open-source. Ainsi, l'ensemble de ce mémoire est motivé par cette considération pratique; nos algorithmes doivent être accessibles et performants. Finalement, nous explorons deux techniques applicables à l'ensemble de nos heuristiques: une technique qui réutilise des calculs précédemment faits dans l'arbre de recherche ainsi qu'une manière d'apprendre de nouvelles heuristiques de branchement pour un problème.=
Abstract
This thesis concerns constraint programming, a paradigm for solving combinatorial problems. The focus is on the mechanism involved in making hypotheses and exploring the solution space towards satisfying solutions: search heuristics. Of interest to us is a specific family called counting-based search, an approach that uses algorithms to estimate the number of solutions of individual constraints in constraint satisfaction problems to guide search. The improvements of two existing counting algorithms and the integration of counting-based search in a constraint programming solver are the two main contributions of this thesis. The first counting algorithm concerns the alldifferent constraint; the second one, the spanningTree constraint. Both constraints are useful for expressing many constraint satisfaction problems and thus are essential for counting-based search. Practical matters are also central to this work; we integrated counting-based search in an open-source constraint programming solver called Gecode. In doing so, we bring this family of search heuristics to a wider audience; everything in this thesis is built upon this contribution. Lastly, we also look at more general improvements to counting-based search with a method for trading computation time for accuracy, and a method for learning new counting-based search heuristics from past experiments.
Département: | Département de génie informatique et génie logiciel |
---|---|
Programme: | Génie informatique |
Directeurs ou directrices: | Gilles Pesant |
URL de PolyPublie: | https://publications.polymtl.ca/3156/ |
Université/École: | École Polytechnique de Montréal |
Date du dépôt: | 17 oct. 2018 15:20 |
Dernière modification: | 26 sept. 2024 11:38 |
Citer en APA 7: | Gagnon, S. (2018). Improvement and Integration of Counting-Based Search Heuristics in Constraint Programming [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/3156/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements