Thèse de doctorat (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Résumé
La programmation stochastique en nombres entiers (SIP) combine la difficulté de l'incertitude et de la non-convexité et constitue une catégorie de problèmes extrêmement difficiles à résoudre. La résolution efficace des problèmes SIP est d'une grande importance en raison de leur vaste applicabilité. Par conséquent, l'intérêt principal de cette dissertation porte sur les méthodes de résolution pour les SIP. Nous considérons les SIP en deux étapes et présentons plusieurs algorithmes de décomposition améliorés pour les résoudre. Notre objectif principal est de développer de nouveaux schémas de décomposition et plusieurs techniques pour améliorer les méthodes de décomposition classiques, pouvant conduire à résoudre optimalement divers problèmes SIP. Dans le premier essai de cette thèse, nous présentons une revue de littérature actualisée sur l'algorithme de décomposition de Benders. Nous fournissons une taxonomie des améliorations algorithmiques et des stratégies d'accélération de cet algorithme pour synthétiser la littérature et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre, nous discutons de l'utilisation de la décomposition de Benders pour développer une (méta- )heuristique efficace, décrire les limites de l'algorithme classique et présenter des extensions permettant son application à un plus large éventail de problèmes. Ensuite, nous développons diverses techniques pour surmonter plusieurs des principaux inconvénients de l'algorithme de décomposition de Benders. Nous proposons l'utilisation de plans de coupe, de décomposition partielle, d'heuristiques, de coupes plus fortes, de réductions et de stratégies de démarrage à chaud pour pallier les difficultés numériques dues aux instabilités, aux inefficacités primales, aux faibles coupes d'optimalité ou de réalisabilité, et à la faible relaxation linéaire. Nous testons les stratégies proposées sur des instances de référence de problèmes de conception de réseau stochastique. Des expériences numériques illustrent l'efficacité des techniques proposées. Dans le troisième essai de cette thèse, nous proposons une nouvelle approche de décomposition appelée méthode de décomposition primale-duale. Le développement de cette méthode est fondé sur une reformulation spécifique des sous-problèmes de Benders, où des copies locales des variables maîtresses sont introduites, puis relâchées dans la fonction objective. Nous montrons que la méthode proposée atténue significativement les inefficacités primales et duales de la méthode de décomposition de Benders et qu'elle est étroitement liée à la méthode de décomposition duale lagrangienne. Les résultats de calcul sur divers problèmes SIP montrent la supériorité de cette méthode par rapport aux méthodes classiques de décomposition. Enfin, nous étudions la parallélisation de la méthode de décomposition de Benders pour étendre ses performances numériques à des instances plus larges des problèmes SIP. Les variantes parallèles disponibles de cette méthode appliquent une synchronisation rigide entre les processeurs maître et esclave. De ce fait, elles souffrent d'un important déséquilibre de charge lorsqu'elles sont appliquées aux problèmes SIP. Cela est dû à un problème maître difficile qui provoque un important déséquilibre entre processeur et charge de travail. Nous proposons une méthode Benders parallèle asynchrone dans un cadre de type branche-et-coupe. L'assouplissement des exigences de synchronisation entraine des problèmes de convergence et d'efficacité divers auxquels nous répondons en introduisant plusieurs techniques d'accélération et de recherche. Les résultats indiquent que notre algorithme atteint des taux d'accélération plus élevés que les méthodes synchronisées conventionnelles et qu'il est plus rapide de plusieurs ordres de grandeur que CPLEX 12.7.
Abstract
Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality. In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems. Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques. In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7. Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7.
Département: | Département de mathématiques et de génie industriel |
---|---|
Programme: | Doctorat en génie industriel |
Directeurs ou directrices: | Michel Gendreau, Teodor G. Crainic et Walter Rei |
URL de PolyPublie: | https://publications.polymtl.ca/3008/ |
Université/École: | École Polytechnique de Montréal |
Date du dépôt: | 18 juin 2018 14:44 |
Dernière modification: | 26 sept. 2024 10:50 |
Citer en APA 7: | Rahmaniani, R. (2018). On High-Performance Benders-Decomposition-Based Exact Methods with Application to Mixed-Integer and Stochastic Problems [Thèse de doctorat, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/3008/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements