Luong Ha Nguyen et James Alexandre Goulet
Article de revue (2018)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Abstract
Detecting changes in structural behaviour, i.e. anomalies over time is an important aspect in structural safety analysis. The amount of data collected from civil structures keeps expanding over years while there is a lack of data-interpretation methodology capable of reliably detecting anomalies without being adversely affected by false alarms. This paper proposes an anomaly detection method that combines the existing Bayesian Dynamic Linear Models framework with the Switching Kalman Filter theory. The potential of the new method is illustrated on the displacement data recorded on a dam in Canada. The results show that the approach succeeded in capturing the anomalies caused by refection work without triggering any false alarms. It also provided the specific information about the dam's health and conditions. This anomaly detection method offers an effective data-analysis tool for Structural Health Monitoring.
Mots clés
Anomaly Detection, Bayesian, Dynamic Linear Model, Switch Kalman Filter, Structural Health Monitoring, False Alarm, Dam
Sujet(s): |
1000 Génie civil > 1000 Génie civil 1100 Génie des structures > 1104 Analyse des structures |
---|---|
Département: | Département des génies civil, géologique et des mines |
Organismes subventionnaires: | CRSNG/NSERC |
Numéro de subvention: | RGPIN-2016-06405 |
URL de PolyPublie: | https://publications.polymtl.ca/2868/ |
Titre de la revue: | Structural Control and Health Monitoring (vol. 25, no 4) |
Maison d'édition: | Wiley |
DOI: | 10.1002/stc.2136 |
URL officielle: | https://doi.org/10.1002/stc.2136 |
Date du dépôt: | 26 mars 2018 12:18 |
Dernière modification: | 25 sept. 2024 18:44 |
Citer en APA 7: | Nguyen, L. H., & Goulet, J. A. (2018). Anomaly detection with the Switching Kalman Filter for structural health monitoring. Structural Control and Health Monitoring, 25(4), 1-18. https://doi.org/10.1002/stc.2136 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions