Alyssa Ngu-Oanh Quach, Lucie Tabor, Dany Dumont, Benoit Courcelles et James Alexandre Goulet
Article de revue (2017)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
Rehabilitation of contaminated soils in urban areas is in high demand because of the appreciation of land value associated with the increased urbanization. Moreover, there are financial incentives to minimize soil characterization uncertainties. Minimizing uncertainty is achieved by providing models that are better representation of the true site characteristics. In this paper, we propose two new probabilistic formulations compatible with Gaussian Process Regression (GPR) and enabling (1) to model the experimental conditions where contaminant concentration is quantified from aggregated soil samples and (2) to model the effect of physical site discontinuities. The performance of approaches proposed in this paper are compared using a Leave One Out Cross-Validation procedure (LOO-CV). Results indicate that the two new probabilistic formulations proposed outperform the standard Gaussian Process Regression.
Sujet(s): | 1000 Génie civil > 1000 Génie civil |
---|---|
Département: | Département des génies civil, géologique et des mines |
Organismes subventionnaires: | Fonds de recherche du Québec - Nature et technologies (FRQNT) |
Numéro de subvention: | 2017-NC-197235 |
URL de PolyPublie: | https://publications.polymtl.ca/2843/ |
Titre de la revue: | Advanced Engineering Informatics (vol. 33) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.aei.2017.05.002 |
URL officielle: | https://doi.org/10.1016/j.aei.2017.05.002 |
Date du dépôt: | 15 janv. 2018 13:55 |
Dernière modification: | 26 sept. 2024 11:03 |
Citer en APA 7: | Quach, A. N.-O., Tabor, L., Dumont, D., Courcelles, B., & Goulet, J. A. (2017). A machine learning approach for characterizing soil contamination in the presence of physical site discontinuities and aggregated samples. Advanced Engineering Informatics, 33, 60-67. https://doi.org/10.1016/j.aei.2017.05.002 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions