<  Back to the Polytechnique Montréal portal

Development of an MRI Template and Analysis Pipeline for the Spinal Cord and Application in Patients with Spinal Cord Injury

Benjamin De Leener

Ph.D. thesis (2017)

Open Access document in PolyPublie
Open Access to the full text of this document
Terms of Use: All rights reserved
Download (50MB)
Show abstract
Hide abstract


The spinal cord plays a fundamental role in the human body, as part of the central nervous systemand being the vector between the brain and the peripheral nervous system. Damaging the spinalcord, through traumatic injuries or neurodegenerative diseases, can significantly affect the qualityof life of patients. Indeed, spinal cord injuries and diseases can affect the integrity of neurons, andinduce neurological impairments and/or functional disabilities. While various treatment proceduresexist, assessing the extent of damages and understanding the underlying mechanisms of diseaseswould improve treatment efficiency and clinical decisions. Over the last decades, magneticresonance imaging (MRI) has demonstrated a high potential for the diagnosis and prognosis ofspinal cord injury and neurodegenerative diseases. Particularly, template-based analysis of brainMRI data has been very helpful for the understanding of neurological diseases, using automatedanalysis of large groups of patients. However, extracting MRI information within specific regionsof the spinal cord with minimum bias and using automated tools is still a challenge. Indeed, only alimited number of MRI template of the spinal cord exists, and none covers the full spinal cord,thereby preventing large multi-centric template-based analysis of the spinal cord. Moreover, notemplate integrates both the spinal cord and the brain region, thereby preventing simultaneouscerebrospinal studies.The objective of this project was to propose a new MRI template of the full spinal cord, whichallows simultaneous brain and spinal cord studies, that integrates atlases of the spinal cord internalstructures (e.g., white and gray matter, white matter pathways) and that comes with tools forextracting information within these subregions. More particularly, the general research question ofthe project was “How to create generic MRI templates of the spinal cord that would enableunbiased and reproducible template-based analysis of spinal cord MRI data?”. Several originalcontributions have been made to answer this question and to enable template-based analysis ofspinal cord MRI data.The first contribution was the development of the Spinal Cord Toolbox (SCT), a comprehensiveand open-source software for processing multi-parametric MRI data of the spinal cord (De Leener,Lévy, et al., 2016). SCT includes tools for the automatic segmentation of the spinal cord and itsinternal structure (white and gray matter), vertebral labeling, registration of multimodal MRI data(structural and non-structural) on a spinal cord MRI template (initially the MNI-Poly-AMUtemplate, later the PAM50 template), co-registration of spinal cord MRI images, as well as therobust extraction of MRI metric within specific regions of the spinal cord (i.e., white and graymatter, white matter tracts, gray matter subregions) and specific vertebral levels using a spinal cordatlas (Lévy et al., 2015). Additional tools include robust motion correction and image processingalong the spinal cord. Each tool included in SCT has been validated on a multimodal dataset.The second contribution of this project was the development of a novel registration methoddedicated to spinal cord images, with an interest in the straightening of the spinal cord, whilepreserving its topology (De Leener, Mangeat et al., 2017). This method is based on the globalapproximation of the spinal cord and the analytical computation of deformation fieldsperpendicular to the centerline. Validation included calculation of distance measurements afterstraightening on a population of healthy subjects and patients with spinal cord compression.The major contribution of this project was the development of a framework for generating MRItemplate of the spinal cord and the PAM50 template, an unbiased and symmetrical MRI templateof the brainstem and full spinal cord. Based on 50 healthy subjects, the PAM50 template wasgenerated using an iterative nonlinear registration process, after applying normalization andstraightening of all images. Pre-processing included segmentation of the spinal cord, manualdelineation of the brainstem anterior edge, detection and identification of intervertebral disks, andnormalization of intensity along the spinal cord. Next, the average centerline and vertebraldistribution was computed to create an initial straight template space. Then, all images wereregistered to the initial template space and an iterative nonlinear registration framework wasapplied to create the final symmetrical template. The PAM50 covers the brainstem and the fullspinal cord, from C1 to L2, is available for T1-, T2- and T2*-weighted contrasts, and includesprobabilistic maps of the white and the gray matter and atlases of the white matter pathways andgray matter subregions. Additionally, the PAM50 template has been merged with the ICBM152brain template, thereby allowing for simultaneous cerebrospinal template-based analysis.Finally, several complementary results, focused on clinical validation and applications, arepresented. First, a reproducibility and repeatability study of cross-sectional area measurementsusing SCT (De Leener, Granberg, Fink, Stikov, & Cohen-Adad, 2017) was performed on aMultiple Sclerosis population (n=9). The results demonstrated the high reproducibility andrepeatability of SCT and its ability to detect very subtle atrophy of the spinal cord. Second, a novelbiomarker of spinal cord injury has been proposed. Based on the T2*-weighted intensity ratiobetween the white and the gray matter, this new biomarker is computed by registering MRI imageswith the PAM50 template and extracting metrics using probabilistic atlases. Additionally, thefeasibility of extracting multiparametric MRI metrics from subregions of the spinal cord has beendemonstrated and the diagnostic potential of this approach has been assessed on a degenerativecervical myelopathy (DCM) population. Finally, a method for extracting shape morphometricsalong the spinal cord has been proposed, including spinal cord flattening, indentation and torsion.These metrics demonstrated high capabilities for the diagnostic of asymptomatic spinal cordcompression (AUC=99.8% for flattening, 99.3% for indentation, and 98.4% for torsion).The development of the PAM50 template enables unbiased template-based analysis of the spinalcord. However, the PAM50 template has several limitations. Indeed, the proposed template hasbeen generated with multimodal MRI images from 50 healthy and young individuals (age = 27+/-6.5 y.o.). Therefore, the template is specific to this particular population and could not be directlyusable for age- or disease-specific populations. One solution is to open-source the templategenerationcode so that research groups can generate and use their own spinal cord MRI template.The code is available on https://github.com/neuropoly/template. While this project introduced ageneric referential coordinate system, based on vertebral levels and the pontomedullary junctionas origin, one limitation is the choice of this coordinate system. Another coordinate system, basedspinal segments would be more suitable for functional analysis. However, the acquisition of MRIimages with high enough resolution to delineate the spinal roots is still challenging. Finally, severalchallenges in the automation of spinal cord MRI processing remains, including the robust detectionand identification of vertebral levels, particularly in case of small fields-of-view.This project introduced key developments for the analysis of spinal cord MRI data. Many moredevelopments are still required to bring them into clinics and to improve our understanding ofdiseases affecting the spinal cord. Indeed, clinical applications require the improvement of therobustness and the automation of the proposed processing and analysis tools. Particularly, thedetection and segmentation of spinal cord structures, including vertebral labeling and white/graymatter segmentation, is still challenging, given the lowest quality and resolution of standard clinicalMRI acquisition. The tools developed and validated here have the potential to improve our understanding and the characterization of diseases affecting the spinal cord and will have a significant impact on the neuroimaging community.


La moelle épinière est un organe fondamental du corps humain. Étant le lien entre le cerveau et lesystème nerveux périphérique, endommager la moelle épinière, que ce soit suite à un trauma ouune maladie neurodégénérative, a des conséquences graves sur la qualité de vie des patients. Eneffet, les maladies et traumatismes touchant la moelle épinière peuvent affecter l'intégrité desneurones et provoquer des troubles neurologiques et/ou des handicaps fonctionnels. Bien que denombreuses voies thérapeutiques pour traiter les lésions de la moelle épinière existent, laconnaissance de l'étendue des dégâts causés par ces lésions est primordiale pour améliorerl'efficacité de leur traitement et les décisions cliniques associées. L'imagerie par résonancemagnétique (IRM) a démontré un grand potentiel pour le diagnostic et pronostic des maladiesneurodégénératives et traumas de la moelle épinière. Plus particulièrement, l'analyse par templatede données IRM du cerveau, couplée à des outils de traitement d'images automatisés, a permis unemeilleure compréhension des mécanismes sous-jacents de maladies comme l'Alzheimer et laSclérose en Plaques. Extraire automatiquement des informations pertinentes d'images IRM au seinde régions spécifiques de la moelle épinière présente toutefois de plus grands défis que dans lecerveau. Il n'existe en effet qu'un nombre limité de template de la moelle épinière dans lalittérature, et aucun ne couvre toute la moelle épinière ou n'est lié à un template existant du cerveau.Ce manque de template et d'outils automatisés rend difficile la tenue de larges études d'analyse dela moelle épinière sur des populations variées.L'objectif de ce projet est donc de proposer un nouveau template IRM couvrant toute la moelleépinière, recalé avec un template existant du cerveau, et intégrant des atlas de la structure internede la moelle épinière (e.g., matière blanche et grise, tracts de la matière blanche). Ce template doitvenir avec une série d'outils automatisés permettant l'extraction d'information IRM au sein derégions spécifiques de la moelle épinière. La question générale de recherche de ce projet est donc« Comment créer un template générique de la moelle épinière, qui permettrait l'analyse nonbiaisée et reproductible de données IRM de la moelle épinière ? ». Plusieurs contributionsoriginales ont été proposées pour répondre à cette question et vont être décrites dans les prochainsparagraphes.La première contribution de ce projet est le développement du logiciel Spinal Cord Toolbox (SCT).SCT est un logiciel open-source de traitement d'images IRM multi-parametrique de la moelleépinière (De Leener, Lévy, et al., 2016). Ce logiciel intègre notamment des outils pour la détectionet la segmentation automatique de la moelle épinière et de sa structure interne (i.e., matière blancheet matière grise), l'identification et la labellisation des niveaux vertébraux, le recalage d'imagesIRM multimodales sur un template générique de la moelle épinière (précédemment le templateMNI-Poly-AMU, maintenant le template PAM50, proposé içi). En se basant sur un atlas de lamoelle, SCT intègre également des outils pour extraire des données IRM de régions spécifiques dela moelle épinière, comme la matière blanche et grise et les tracts de la matière blanche, ainsi quesur des niveaux vertébraux spécifiques. D'autres outils additionnels ont aussi été proposés, commedes outils de correction de mouvement et de traitement basiques d'images appliqués le long de lamoelle épinière. Chaque outil intégré à SCT a été validé sur un jeu de données multimodales.La deuxième contribution de ce projet est le développement d'une nouvelle méthode de recalaged'images IRM de la moelle épinière (De Leener, Mangeat, et al., 2017). Cette méthode a étédéveloppée pour un usage particulier : le redressement d'images IRM de la moelle épinière, maispeut également être utilisé pour recaler plusieurs images de la moelle épinière entre elles, tout entenant compte de la distribution vertébrale de chaque sujet. La méthode proposée se base sur uneapproximation globale de la courbure de la moelle épinière dans l'espace et sur la résolutionanalytique des champs de déformation entre les deux images. La validation de cette nouvelleméthode a été réalisée sur une population de sujets sains et de patients touchés par une compressionde la moelle épinière.La contribution majeure de ce projet est le développement d'un système de création de templateIRM de la moelle épinière et la proposition du template PAM50 comme template de référence pourles études d'analyse par template de données IRM de la moelle épinière. Le template PAM50 a étécréé à partir d'images IRM tiré de 50 sujets sains, et a été généré en utilisant le redressementd'images présenté ci-dessus et une méthode de recalage d'images itératif non linéaire, aprèsplusieurs étapes de prétraitement d'images. Ces étapes de prétraitement incluent la segmentationautomatique de la moelle épinière, l'extraction manuelle du bord antérieur du tronc cérébral, ladétection et l'identification des disques intervertébraux, et la normalisation d'intensité le long dela moelle. Suite au prétraitement, la ligne centrale moyenne de la moelle et la distribution vertébraleont été calculées sur la population entière de sujets et une image initiale de template a été générée.Après avoir recalé toutes les images sur ce template initial, le template PAM50 a été créé enutilisant un processus itératif de recalage d'image, utilisé pour générer des templates de cerveau.Le PAM50 couvre le tronc cérébral et la moelle épinière en entier, est disponible pour les contrastesIRM pondérés en T1, T2 et T2*, et intègre des cartes probabilistes et atlas de la structure internede la moelle épinière. De plus, le PAM50 a été recalé sur le template ICBM152 du cerveau,permettant ainsi la tenue d'analyse par template simultanément dans le cerveau et dans la moelleépinière.Finalement, plusieurs résultats complémentaires ont été présentés dans cette dissertation.Premièrement, une étude de validation de la répétabilité et reproductibilité de mesures de l'aire desection de la moelle épinière a été menée sur une population de patients touchés par la sclérose enplaques. Les résultats démontrent une haute fiabilité des mesures ainsi que la possibilité de détecterdes changements très subtiles de l'aire de section transverse de la moelle, importants pour mesurerl'atrophie de la moelle épinière précoce due à des maladies neurodégénératives comme la scléroseen plaques. Deuxièmement, un nouveau biomarqueur IRM des lésions de la moelle épinière a étéproposé, en collaboration avec Allan Martin, de l'Université de Toronto. Ce biomarqueur, calculéà partir du ratio d'intensité entre la matière blanche et grise sur des images IRM pondérées en T2*,utilise directement les développements proposés dans ce projet, notamment en utilisant le recalagedu template de la moelle épinière et les méthodes de segmentation de la moelle. La faisabilitéd'extraire des mesures de données IRM multiparamétrique dans des régions spécifiques de lamoelle épinière a également été démontrée, permettant d'améliorer le diagnostic et pronostic delésions et compression de la moelle épinière. Finalement, une nouvelle méthode d'extraction de lamorphométrie de la moelle épinière a été proposée et utilisée sur une population de patients touchéspar une compression asymptomatique de la moelle épinière, démontrant de grandes capacités dediagnostic (> 99%).Le développement du template PAM50 comble le manque de template de la moelle épinière dansla littérature mais présente cependant plusieurs limitations. En effet, le template proposé se basesur une population de 50 sujets sains et jeunes (âge moyen = 27 +- 6.5) et est donc biaisée verscette population particulière. Adapter les analyses par template pour un autre type de population(âge, race ou maladie différente) peut être réalisé directement sur les méthodes d'analyse mais aussisur le template en lui-même. Tous le code pour générer le template a en effet été mis en ligne(https://github.com/neuropoly/template) pour permettre à tout groupe de recherche de développerson propre template. Une autre limitation de ce projet est le choix d'un système de coordonnéesbasé sur la position des vertèbres. En effet, les vertèbres ne représentent pas complètement lecaractère fonctionnel de la moelle épinière, à cause de la différence entre les niveaux vertébraux etspinaux. Le développement d'un système de coordonnées spinal, bien que difficile à caractériserdans des images IRM, serait plus approprié pour l'analyse fonctionnelle de la moelle épinière.Finalement, il existe encore de nombreux défis pour automatiser l'ensemble des outils développésdans ce projet et les rendre robuste pour la majorité des contrastes et champs de vue utilisés enIRM conventionnel et clinique.Ce projet a présenté plusieurs développements importants pour l'analyse de données IRM de lamoelle épinière. De nombreuses améliorations du travail présenté sont cependant requises pouramener ces outils dans un contexte clinique et pour permettre d'améliorer notre compréhension desmaladies affectant la moelle épinière. Les applications cliniques requièrent notammentl'amélioration de la robustesse et de l'automatisation des méthodes d'analyse d'images proposées.La caractérisation de la structure interne de la moelle épinière, incluant la matière blanche et lamatière grise, présente en effet de grands défis, compte tenu de la qualité et la résolution des imagesIRM standard acquises en clinique. Les outils développés et validés au cours de ce projet ont ungrand potentiel pour la compréhension et la caractérisation des maladies affectant la moelleépinière et aura un impact significatif sur la communauté de la neuroimagerie.
Department: Institut de génie biomédical
Program: Génie biomédical
Academic/Research Directors: Julien Cohen-Adad
PolyPublie URL: https://publications.polymtl.ca/2743/
Institution: École Polytechnique de Montréal
Date Deposited: 23 Mar 2018 15:49
Last Modified: 08 Nov 2022 18:22
Cite in APA 7: De Leener, B. (2017). Development of an MRI Template and Analysis Pipeline for the Spinal Cord and Application in Patients with Spinal Cord Injury [Ph.D. thesis, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2743/


Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only

View Item View Item