Catherine Brosseau, Bettina Émile, Marc-André Labelle, Édith Laflamme, Peter L. Dold et Yves Comeau
Article de revue (2016)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (430kB) |
Résumé
High-rate wastewater processes are receiving a renewed interest to obtain energy positive/efficient water resource recovery facilities. An innovative treatment train combining a high-rate moving bed biofilm reactor (HR-MBBR) with an enhanced flotation process was studied. The two objectives of this work were 1) to maximize the conversion of soluble organics to particulate matter in an HR-MBBR and 2) to maximize the particulate matter recovery from the HR-MBBR effluent by green chemicals to enhance biogas production by anaerobic digestion. To achieve these objectives, lab-scale MBBRs fed with synthetic soluble wastewater were operated at organic loading rates (OLRs) between 4 and 34 kg COD m−3 reactor d−1 corresponding to hydraulic retention times (HRTs) between 6 and 54 min.
Colloidal and soluble chemical oxygen demand (COD) removal efficiency in the HR-MBBR increased with HRT to reach a plateau of 85% at an HRT longer than 27 min. Carrier clogging observed at an OLR higher than 16 kg COD m−3 d−1 (HRT < 13 min) resulted in about 23% loss in colloidal and soluble COD removal efficiency. Thus, the recommended parameters were between 22 and 37 min and between 6 and 10 kg COD m−3 d−1 for the HRT and the OLR, respectively, to maximize the conversion of soluble organics to particulate matter.
Total suspended solids (TSS) recovery of 58–85% and 90–97% were achieved by enhanced flotation using green and unbiodegradable chemicals, respectively, corresponding to a TSS effluent concentration below 14 and 7 mg TSS/L. Among the synthetic polymers tested, a high molecular weight and low charge density cationic polyacrylamide was found to give the best results with less than 2 mg TSS/L in the clarified effluent (97% TSS recovery). Green chemicals, although performing slightly less for solids separation than unbiodegradable chemicals, achieved a mean TSS concentration of 10 ± 3 mg/L in the clarified effluent.
Mots clés
Moving bed biofilm reactor, Innovative separation process, Enhanced flotation, Green coagulant, Green polymer, High-rate process
Sujet(s): | 1500 Génie de l'environnement > 1502 Traitement des eaux usées |
---|---|
Département: | Département des génies civil, géologique et des mines |
Organismes subventionnaires: | CRSNG/NSERC, FRQ-NT, Veolia Water Technologies Canada Inc., Ville de Repentigny, EnviroSim Associates Ltd. |
Numéro de subvention: | RDCP J 435326-12 |
URL de PolyPublie: | https://publications.polymtl.ca/2364/ |
Titre de la revue: | Water Research (vol. 106) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.watres.2016.10.019 |
URL officielle: | https://doi.org/10.1016/j.watres.2016.10.019 |
Date du dépôt: | 09 déc. 2016 14:39 |
Dernière modification: | 26 sept. 2024 10:40 |
Citer en APA 7: | Brosseau, C., Émile, B., Labelle, M.-A., Laflamme, É., Dold, P. L., & Comeau, Y. (2016). Compact secondary treatment train combining a lab-scale moving bed biofilm reactor and enhanced flotation processes. Water Research, 106, 571-582. https://doi.org/10.1016/j.watres.2016.10.019 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions