Mémoire de maîtrise (2016)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (5MB) |
Résumé
Contexte : Les métastases hépatiques colorectales sont la principale cause de décès liée au cancer du foie dans le monde. Au cours de la dernière décennie, il a été démontré que l'ablation par radiofréquence (RFA, pour radiofrequency ablation) est une méthode de traitement percutané très efficace contre ce type de métastases. Cela dit, un positionnement précis de l'embout de l'aiguille utilisé en RFA est essentiel afin de se départir adéquatement de la totalité des cellules cancéreuses. Une technologie prometteuse pour obtenir la forme et la position de l'aiguille en temps réel est basée sur l'utilisation de réseaux de Bragg (FBG, pour fiber Bragg grating) à titre de senseur de contrainte. En effet, ce type de senseurs a une vitesse d'acquisition allant jusqu'à 20 kHz, ce qui est suffisamment rapide pour permettre des applications de guidage en temps réel. Méthode : Les travaux présentés au sein de ce mémoire décrivent le développement d'une technologie, compatible aux systèmes d'imageries par résonance magnétique (IRM), permettant d'effectuer le suivi de la forme de l'aiguille utilisée en RFA. Premièrement, trois fibres contenant une série de réseaux de Bragg ont été collées dans une géométrie spécifique et intégrées à l'intérieur d'une aiguille 20G-150 mm. Ensuite, un algorithme de reconstruction de forme tridimensionnelle a été développé, basé sur les mesures de translation spectrales des FBGs acquises en temps réel durant le guidage de l'aiguille. La position du bout de l'aiguille ainsi que la forme tridimensionnelle complète de celle-ci ont été représentées et comparées à la position de la zone ciblée à la suite d'une simple méthode de calibration. Finalement, nous avons validé notre système de navigation en effectuant une série d'expériences in vitro. La précision du système de reconstruction tridimensionnelle de la forme et de l'orientation de l'aiguille a été évaluée en utilisant deux caméras positionnées perpendiculairement de manière à connaitre la position de l'aiguille dans le système d'axes du laboratoire. L'évaluation de la précision au bout de l'aiguille a quant à elle été faite en utilisant des fantômes précisément conçus à cet effet. Finalement, des interventions guidées en IRM ont été testées et comparées au système de navigation électromagnétique NDI Aurora (EMTS, pour Electromagnétic tracking system) par le biais du FRE (fiducial registration error) et du TRE (target registration error). Résultats: Lors de nos premières expériences in vitro, la précision obtenue quant à la position du bout de l'aiguille était de 0,96 mm pour une déflexion allant jusqu'à ±10,68 mm. À titre comparatif, le système d'Aurora a une précision de 0.84 mm dans des circonstances similaires. Les résultats obtenus lors de nos seconds tests ont démontré que l'erreur entre la position réelle du bout de l'aiguille et la position fournie par notre système de reconstruction de forme est de 1,04 mm, alors qu'elle est de 0,82 mm pour le EMTS d'Aurora. Pour ce qui est de notre dispositif, cette erreur est proportionnelle à l'amplitude de déflexion de l'aiguille, contrairement à l'EMTS pour qui l'erreur demeure relativement constante. La dernière expérience a été effectuée à l'aide d'un fantôme en gélatine, pour laquelle nous avons obtenu un TRE de 1,19 mm pour notre système basé sur les FBG et de 1.06 mm pour le système de navigation par senseurs électromagnétiques (EMTS). Les résultats démontrent que l'évaluation du FRE est similaire pour les deux approches. De plus, l'information fournie par les caméras permet d'estimer la précision de notre dispositif en tout point le long de l'aiguille. Conclusion : En analysant et en interprétant les résultats obtenus lors de nos expériences in vitro, nous pouvons conclure que la précision de notre système de navigation basé sur les FBG est bien adaptée pour l'évaluation de la position du bout et la forme de l'aiguille lors d'interventions RFA des tumeurs du foie. La précision de notre système de navigation est fortement comparable avec celle du système basé sur des senseurs électromagnétiques commercialisé par Aurora. L'erreur obtenue par notre système est attribuable à un mauvais alignement des réseaux de Bragg par rapport au plan associé à la région sensorielle et aussi à la différence entre le diamètre des fibres et celui de la paroi interne de l'aiguille.
Abstract
Background: Colorectal liver metastasis is the leading cause of liver cancer death in the world. In the past decade, radiofrequency ablation (RFA) has proven to be an effective percutaneous treatment modality for the treatment of metastatic hepatic cancer. Accurate needle tip placement is essential for RFA of liver tumors. A promising technology to obtain the real-time information of the shape of the needle is by using fiber Bragg grating (FBG) sensors at high frequencies (up to 20 kHz). Methods: In this thesis work, we developed an MR-compatible needle tracking technology designed for RFA procedures in liver cancer. At first, three fibers each containing a series of FBGs were glued together and integrated inside a 20G-150 mm needle. Then a three-dimensional needle shape reconstruction algorithm was developed, based on the FBG measurements collected in real-time during needle guidance. The tip position and shape of the reconstructed 3D needle model were represented with respect to the target defined in the image space by performing a fiducial-based registration. Finally, we validated our FBG-based needle navigation by doing a series of in-vitro experiments. The shape of the 3D reconstructed needle was compared to measurements obtained from camera images. In addition, the needle tip accuracy was assessed on the ground-truth phantoms. Finally, MRI guided intervention was tested and compared to an NDI Aurora EM tracking system (EMTS) in terms of fiducial registration error (FRE) and target registration error (TRE). Results: In our first in-vitro experiment, the tip tracking accuracy of our FBG tracking system was of 0.96 mm for the maximum tip deflection of up to ±10.68 mm, while the tip tracking accuracy of the Aurora system for the similar test was 0.84 mm. Results obtained from the second in-vitro experiment demonstrated tip tracking accuracy of 1.04 mm and 0.82 mm for our FBG tracking system and Aurora EMTS, respectively for the maximum tip deflection of up to ±16.83 mm. The tip tracking error in the developed FBG-based system reduced linearly with decreasing tip deflection, while the error was similar but randomly varying for the EMTS. The last experiment was done with a gel phantom, yielding a TRE of 1.19 mm and 1.06 mm for the FBG and EM tracking, respectively. Results showed that across all experiments, the computed FRE of both tracking systems was similar. Moreover, actual shape information obtained from the camera images ensured the shape accuracy of our FBG-based needle shape model. Conclusion: By analyzing and interpreting the results obtained from the in-vitro experiments, we conclude that the accuracy of our FBG-based tracking system is suitable for needle tip detection in RFA of liver tumors. The accuracy of our tracking system is nearly comparable to that of the Aurora EMTS. The error given by our tracking system is attributed to the misalignment of the FBG sensors in a single axial plane and also to the gap between the needle's inner wall and the fibers inside.
Département: | Département de génie informatique et génie logiciel |
---|---|
Programme: | Génie informatique |
Directeurs ou directrices: | Samuel Kadoury et Sylvain Martel |
URL de PolyPublie: | https://publications.polymtl.ca/2090/ |
Université/École: | École Polytechnique de Montréal |
Date du dépôt: | 13 juil. 2016 10:17 |
Dernière modification: | 03 oct. 2024 18:58 |
Citer en APA 7: | Mandal, K. K. (2016). Intra-Operative Needle Tracking Using Optical Shape Sensing Technology [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2090/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements