Caroline Landelle, Ovidiu Lungu, Shahabeddin Vahdat, Anne Kavounoudias, Véronique Marchand-Pauvert, Benjamin De Leener and Julien Doyon
Article (2021)
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Non-commercial No Derivatives Download (2MB) |
Abstract
Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.
Uncontrolled Keywords
- Humans
- Magnetic Resonance Imaging/*methods
- Spinal Cord/anatomy & histology/*diagnostic imaging/*physiology
- *Motor
- *Proprioception
- *Sensorimotor pathways
- *Spinal-cord FMRI
- *Touch
- *resting-state
- competing financial interests or personal relationships that could have appeared
- to influence the work reported in this paper.
| Department: | Department of Computer Engineering and Software Engineering |
|---|---|
| Funders: | Fondation Courtois, Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de Recherche du Québec –Santé (FRQ-S) |
| Grant number: | RGPIN- 2020–05242 |
| PolyPublie URL: | https://publications.polymtl.ca/10646/ |
| Journal Title: | NeuroImage (vol. 245) |
| Publisher: | Elsevier |
| DOI: | 10.1016/j.neuroimage.2021.118684 |
| Official URL: | https://doi.org/10.1016/j.neuroimage.2021.118684 |
| Date Deposited: | 18 Jul 2023 12:10 |
| Last Modified: | 05 Apr 2025 17:04 |
| Cite in APA 7: | Landelle, C., Lungu, O., Vahdat, S., Kavounoudias, A., Marchand-Pauvert, V., De Leener, B., & Doyon, J. (2021). Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging. NeuroImage, 245, 118684. https://doi.org/10.1016/j.neuroimage.2021.118684 |
|---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions
