Flavien Binet, François Saunier, Manuele Margni
Article (2021)
|
Open Access to the full text of this document Published Version Terms of Use: Creative Commons Attribution Download (1MB) |
|
![]() |
Open Access to the full text of this document Spreadsheet - Supplemental Material Terms of Use: Creative Commons Attribution Download (493kB) |
Abstract
This research project aims to evaluate the potential reduction of environmental impacts from circular economy strategies on an industrial sector at a regional scale with a case study on Greenhouse Gas (GHG) emissions in Quebec's steel industry and its value chain. To do so, an integrated model has been created based on the matrix approach, building on material flow analysis (MFA) tracking flows and stocks and on life cycle assessment (LCA) to compute direct (from the activity, e.g., combustion process) and indirect (from the supply chain, e.g., production of raw material inside or outside of region) emissions. This theoretical model is designed to be applied to any emissions or environmental impacts from a specific sector in a given region and enable to model the effects of circularity strategies to both flows and related environmental impacts. The overall mitigation potential of individual or combined circular economy strategies on a specific sector could thus be evaluated across its entire value chain. In the case study, a set of the most promising circular strategies applicable in the Quebec context were identified, and the GHG reduction potential within and outside the province is calculated and compared with actual emissions. Six circular strategies were analyzed acting at three different levers, namely, GHG/material (increase iron recycling rate, switch to hydrogen-based reduction production), material/product (reduce weight of vehicle, limit over-specification in building construction), and product/service (increase buildings and cars lifetime, increase car-sharing), and therefore impact rather direct or indirect emissions on different stages of the steel life cycle. Combining these six strategies into a consolidated scenario shows that a circular-driven economy allows to cut down GHG emissions of the cradle-to-gate steel industry value chain by −55%, i.e., 1.67 Mt CO2e. Taking into account use phase of steel, overall reductions are estimated at −6.03 Mt CO2e, i.e., −30% of the whole life cycle.
Uncontrolled Keywords
circular economy ; life cycle assessment ; material flow analysis ; iron and steel ; quantitative method
Subjects: |
1500 Environmental engineering > 1500 Environmental engineering 1600 Industrial engineering > 1600 Industrial engineering 1600 Industrial engineering > 1606 Operations management 1800 Chemical engineering > 1800 Chemical engineering 1800 Chemical engineering > 1802 Biochemical engineering |
---|---|
Department: |
Department of Chemical Engineering Department of Mathematics and Industrial Engineering |
Research Center: | CIRAIG - International Reference Centre for the Life Cycle of Products, Processes and Services |
Funders: | Fonds de Recherche du Quebec-Nature et Technologies (FRQMT) |
PolyPublie URL: | https://publications.polymtl.ca/10605/ |
Journal Title: | Frontiers in Sustainability (vol. 2) |
Publisher: | Frontiers Media S.A. |
DOI: | 10.3389/frsus.2021.738890 |
Official URL: | https://doi.org/10.3389/frsus.2021.738890 |
Date Deposited: | 27 Feb 2023 09:37 |
Last Modified: | 12 May 2023 10:27 |
Cite in APA 7: | Binet, F., Saunier, F., & Margni, M. (2021). Assessing the mitigation potential of environmental impacts from circular economy strategies on an industrial sector and its value chain: a case study on the steel value chain in Quebec. Frontiers in Sustainability, 2, 738890 (14 pages). https://doi.org/10.3389/frsus.2021.738890 |
---|---|
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions