<  Back to the Polytechnique Montréal portal

Revisiting the regiospecificity of burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-tetrachlorobiphenyl

Diane Barriault, François Lepine, Mahmood Mohammadi, Sylvain Milot, Nicolas Leberre and Michel Sylvestre

Article (2004)

Open Acess document in PolyPublie and at official publisher

Document published while its authors were not affiliated with Polytechnique Montréal

[img]
Preview
Open Access to the full text of this document
Published Version
Terms of Use: Creative Commons Attribution
Download (802kB)
Show abstract
Hide abstract

Abstract

2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2). The most abundant metabolite, 1, was previously identified as 2,3-dihydroxy-2'-chlorobiphenyl and was presumed to originate from the initial attack by the oxygenase on the chlorine-bearing ortho carbon and on its adjacent meta carbon of one phenyl ring. 2,3,2',3'-Tetrachlorobiphenyl is transformed by LB400 BPDO into two metabolites that had never been fully characterized structurally. We determined the precise identity of the metabolites produced by LB400 BPDO from 2,2'-CB and 2,3,2',3'-CB, thus providing new insights on the mechanism by which 2,2'-CB is dehalogenated to generate 2,3-dihydroxy-2'-chlorobiphenyl. We reacted 2,2'-CB with the BPDO variant p4, which produces a larger proportion of metabolite 2. The structure of this compound was determined as cis-3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl by NMR. Metabolite 1 obtained from 2,2'-CB-d(8) was determined to be a dihydroxychlorobiphenyl-d(7) by gas chromatographic-mass spectrometric analysis, and the observed loss of only one deuterium clearly shows that the oxygenase attack occurs on carbons 2 and 3. An alternative attack at the 5 and 6 carbons followed by a rearrangement leading to the loss of the ortho chlorine would have caused the loss of more than one deuterium. The major metabolite produced from catalytic oxygenation of 2,3,2',3'-CB by LB400 BPDO was identified by NMR as cis-4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl. These findings show that LB400 BPDO oxygenates 2,2'-CB principally on carbons 2 and 3 and that BPDO regiospecificity toward 2,2'-CB and 2,3,2,',3'-CB disfavors the dioxygenation of the chlorine-free ortho-meta carbons 5 and 6 for both congeners.

Uncontrolled Keywords

Bacterial Proteins/*metabolism; Burkholderia/*enzymology; Iron-Sulfur Proteins/*metabolism; Magnetic Resonance Spectroscopy; Molecular Conformation; Molecular Structure; Oxygen/metabolism; Oxygenases/*metabolism; Polychlorinated Biphenyls/chemistry/*metabolism; Substrate Specificity;

Subjects: 1800 Chemical engineering > 1800 Chemical engineering
2700 Information technology > 2700 Information technology
Department: Department of Computer Engineering and Software Engineering
Funders: CRSNG / NSERC
Grant number: 257566, 0039579
PolyPublie URL: https://publications.polymtl.ca/10601/
Edition: 2004/09/03th ed.
Journal Title: Journal of Biological Chemistry (vol. 279, no. 46)
Publisher: Elsevier
DOI: 10.1074/jbc.m406808200
Official URL: https://doi.org/10.1074/jbc.m406808200
Date Deposited: 10 Nov 2023 10:18
Last Modified: 27 Sep 2024 12:32
Cite in APA 7: Barriault, D., Lepine, F., Mohammadi, M., Milot, S., Leberre, N., & Sylvestre, M. (2004). Revisiting the regiospecificity of burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-tetrachlorobiphenyl. Journal of Biological Chemistry, 279(46), 47489-47496. https://doi.org/10.1074/jbc.m406808200

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only

View Item View Item