<  Retour au portail Polytechnique Montréal

Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths

Shibo Zou, Daniel Therriault et Frederick Gosselin

Article de revue (2021)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Soft materials capable of large inelastic deformation play an essential role in high-performance nacre-inspired architectured materials with a combination of stiffness, strength and toughness. The rigid “building blocks” made from glass or ceramic in these architectured materials lack inelastic deformation capabilities and thus rely on the soft interface material that bonds together these building blocks to achieve large deformation and high toughness. Here, we demonstrate the concept of achieving large inelastic deformation and high energy dissipation in soft materials by embedding microstructured thermoplastic fibers with sacrificial bonds and hidden lengths in a widely used elastomer. The microstructured fibers are fabricated by harnessing the fluid-mechanical instability of a molten polycarbonate (PC) thread on a commercial 3D printer. Polydimethylsiloxane (PDMS) resin is infiltrated around the fibers, creating a soft composite after curing. The failure mechanism and damage tolerance of the composite are analyzed through fracture tests. The high energy dissipation is found to be related to the multiple fracture events of both the sacrificial bonds and elastomer matrix. Combining the microstructured fibers and straight fibers in the elastomer composite results in a ~ 17 times increase in stiffness and a ~ 7 times increase in total energy to failure compared to the neat elastomer. Our findings in applying the sacrificial bonds and hidden lengths toughening mechanism in soft materials at the microscopic scale will facilitate the development of novel bioinspired laminated composite materials with high mechanical performance.

Mots clés

3D printing; instability; stretchable materials; energy dissipation; damage tolerance

Sujet(s): 2000 Science et technologie des matériaux > 2001 Structure, propriétés et essais des matériaux
2000 Science et technologie des matériaux > 2004 Polymères et revêtements
2100 Génie mécanique > 2100 Génie mécanique
Département: Département de génie mécanique
Centre de recherche: CREPEC - Centre de recherche sur les systèmes polymères et composites à haute performance
LM2 - Laboratoire de Mécanique Multi-échelles
Organismes subventionnaires: Fonds de Recherche du Québec: Nature et Technologies (FRQNT), CRSNG/NSERC, Canadian Foundation for Innovation
Numéro de subvention: 63014, 175791953
URL de PolyPublie: https://publications.polymtl.ca/10430/
Titre de la revue: Extreme Mechanics Letters (vol. 43)
Maison d'édition: Elsevier
DOI: 10.1016/j.eml.2021.101208
URL officielle: https://doi.org/10.1016/j.eml.2021.101208
Date du dépôt: 23 août 2022 10:26
Dernière modification: 27 sept. 2024 22:24
Citer en APA 7: Zou, S., Therriault, D., & Gosselin, F. (2021). Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths. Extreme Mechanics Letters, 43, 101208 (9 pages). https://doi.org/10.1016/j.eml.2021.101208

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document