Shibo Zou, Daniel Therriault et Frederick Gosselin
Article de revue (2021)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (1MB) |
Abstract
Soft materials capable of large inelastic deformation play an essential role in high-performance nacre-inspired architectured materials with a combination of stiffness, strength and toughness. The rigid “building blocks” made from glass or ceramic in these architectured materials lack inelastic deformation capabilities and thus rely on the soft interface material that bonds together these building blocks to achieve large deformation and high toughness. Here, we demonstrate the concept of achieving large inelastic deformation and high energy dissipation in soft materials by embedding microstructured thermoplastic fibers with sacrificial bonds and hidden lengths in a widely used elastomer. The microstructured fibers are fabricated by harnessing the fluid-mechanical instability of a molten polycarbonate (PC) thread on a commercial 3D printer. Polydimethylsiloxane (PDMS) resin is infiltrated around the fibers, creating a soft composite after curing. The failure mechanism and damage tolerance of the composite are analyzed through fracture tests. The high energy dissipation is found to be related to the multiple fracture events of both the sacrificial bonds and elastomer matrix. Combining the microstructured fibers and straight fibers in the elastomer composite results in a ~ 17 times increase in stiffness and a ~ 7 times increase in total energy to failure compared to the neat elastomer. Our findings in applying the sacrificial bonds and hidden lengths toughening mechanism in soft materials at the microscopic scale will facilitate the development of novel bioinspired laminated composite materials with high mechanical performance.
Mots clés
3D printing; instability; stretchable materials; energy dissipation; damage tolerance
Sujet(s): |
2000 Science et technologie des matériaux > 2001 Structure, propriétés et essais des matériaux 2000 Science et technologie des matériaux > 2004 Polymères et revêtements 2100 Génie mécanique > 2100 Génie mécanique |
---|---|
Département: | Département de génie mécanique |
Centre de recherche: |
CREPEC - Centre de recherche sur les systèmes polymères et composites à haute performance LM2 - Laboratoire de Mécanique Multi-échelles |
Organismes subventionnaires: | Fonds de Recherche du Québec: Nature et Technologies (FRQNT), CRSNG/NSERC, Canadian Foundation for Innovation |
Numéro de subvention: | 63014, 175791953 |
URL de PolyPublie: | https://publications.polymtl.ca/10430/ |
Titre de la revue: | Extreme Mechanics Letters (vol. 43) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.eml.2021.101208 |
URL officielle: | https://doi.org/10.1016/j.eml.2021.101208 |
Date du dépôt: | 23 août 2022 10:26 |
Dernière modification: | 27 sept. 2024 22:24 |
Citer en APA 7: | Zou, S., Therriault, D., & Gosselin, F. (2021). Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths. Extreme Mechanics Letters, 43, 101208 (9 pages). https://doi.org/10.1016/j.eml.2021.101208 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions