Adam Neale, Michaël Kummert et Michel Bernier
Article de revue (2022)
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (998kB) |
Abstract
The objective of this study is to apply machine learning classification to predict building characteristics from electricity smart meter data for the purpose of building stock characterization. Given that there are no publicly available large-scale residential electric smart meter data sets with detailed building characteristics, an open-source virtual smart meter (VSM) data set is used. The VSM data consists of electricity consumption profiles for 200,000 homes with 21 known characteristics, which are used to train predictive models with linear discriminant analysis (LDA). The classification accuracy (CA) is determined for a variety of scenarios where the meter data aggregation and period are varied. The CA depends on the parameter to be classified (the class), the number of data points per building (the features) and the number of buildings used for classification. Reliable classification results are obtained when the number of buildings exceeds the number of features by a significant margin. An application of the developed predictive models to a small data set of 30 real houses illustrates the usefulness of the method but also the challenges in achieving a generalized model with virtual data.
Mots clés
Residential, Smart meter data, Supervised machine learning, Linear discriminant analysis, Building stock characterization, Classification studies
Sujet(s): |
2100 Génie mécanique > 2100 Génie mécanique 2100 Génie mécanique > 2107 Modélisation, simulation et méthodes des éléments finis 2500 Génie électrique et électronique > 2501 Réseaux électriques 2500 Génie électrique et électronique > 2518 Instrumentation et mesures |
---|---|
Département: | Département de génie mécanique |
Centre de recherche: | ICIRD - Institut canadien international pour les ressources et le développement |
Organismes subventionnaires: | IVADO Fundamental Research Grant |
URL de PolyPublie: | https://publications.polymtl.ca/10339/ |
Titre de la revue: | Energy & Buildings (vol. 258) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.enbuild.2021.111823 |
URL officielle: | https://doi.org/10.1016/j.enbuild.2021.111823 |
Date du dépôt: | 20 mai 2022 11:57 |
Dernière modification: | 28 sept. 2024 09:32 |
Citer en APA 7: | Neale, A., Kummert, M., & Bernier, M. (2022). Discriminant analysis classification of residential electricity smart meter data. Energy & Buildings, 258, 111823 (18 pages). https://doi.org/10.1016/j.enbuild.2021.111823 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions