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Discriminant Analysis Classification of Residential Electricity Smart 
Meter Data 

The objective of this study is to apply machine learning classification to predict 

building characteristics from electricity smart meter data for the purpose of 

building stock characterization. Given that there are no publicly available large-

scale residential electric smart meter data sets with detailed building 

characteristics, an open-source virtual smart meter (VSM) data set is used. The 

VSM data consists of electricity consumption profiles for 200,000 homes with 21 

known characteristics, which are used to train predictive models with linear 

discriminant analysis (LDA). The classification accuracy (CA) is determined for 

a variety of scenarios where the meter data aggregation and period are varied. 

The CA depends on the parameter to be classified (the class), the number of data 

points per building (the features) and the number of buildings used for 

classification. Reliable classification results are obtained when the number of 

buildings exceeds the number of features by a significant margin. An application 

of the developed predictive models to a small data set of 30 real houses illustrates 

the usefulness of the method but also the challenges in achieving a generalized 

model with virtual data. 

1 Introduction 

Evaluating the effectiveness of energy efficiency measures and technology upgrades for 

buildings on a large scale, such as at the urban, provincial or national levels, can require 

the use of a building stock energy model. Developing such models can be accomplished 

using a number of techniques, including top-down models and bottom-up engineering 

and statistics-based models (Swan and Ugursal 2009). Building archetypes are one such 

method that requires an information gathering process known as segmentation and 

characterisation (Sokol et al. 2016). Regardless of the technique used, information on 

the building stock is a limiting factor on the accuracy of the resulting model (Booth, 

Choudhary, and Spiegelhalter 2012).   



Electricity smart metering has become very widespread in the last decade, with 

the United States installing 98 million meters in 2019, the total now covering 70% of 

the U.S. residential market (Mordor Intelligence 2021). In the province of Québec, 

Canada, there are 3.7 million installed smart meters, which includes over 1 million 

single-family homes (Hydro-Québec 2016). The prevalence of metered data can provide 

a wealth of information considering that the electricity consumption is monitored at 

subhourly intervals. With a sufficiently large smart meter data set, with information 

about relevant building parameters, it could be possible to leverage the vast quantity of 

metered data to extract building details from anonymous smart meter data. Such details 

could be used for the purpose of building stock modelling techniques, such as building 

stock segmentation and characterisation (Sokol et al. 2016). The main problem is to 

leverage such smart meter data in a way that protects the privacy of the homeowners 

while serving modeling professionals as a source of building stock data. 

A variety of well-documented supervised machine learning techniques can serve 

to establish correlations between a set of inputs and one or more data points. For 

example, James et al. (2013) provides an introduction and overview of many statistical 

learning techniques. The term supervised indicates that a training set is required to 

develop a model that correlates a series of input data, or predictors, with a 

corresponding output, or response. This process is also often called classification when 

the response is qualitative rather than quantitative, as the process determines a class 

category for a particular set of data, as opposed to a numeric value. A generalized 

illustration of predictive model development and application is described in Figure 1. 



 

Figure 1. Generalized supervised machine learning predictive model development process 

The general approach to develop a predictive model involves a training set of 

predictor data used to explain a qualitative response variable described in terms of class 

categories, as described in Figure 1. The term predictive model is used here, as the 

purpose of classification is to develop a model such that new data can be input to 

predict a class value (Shmueli 2010). The new predictor data must share the same 

number of features as the original training data set, which describes the number of data 

for each case. The classification terms used above, such as predictor, response and 

feature, are described in more detail in the glossary at the end of the paper.  

Statistical learning methods, including the classification approach illustrated in 

Figure 1, are already applied to a wide variety of fields, including handwriting 

recognition, DNA mapping, e-mail spam detection, etc. (Hastie, Tibshirani, and 

Friedman 2009). Classification has been identified as one of the key smart grid analysis 

tools going forward (Y. Zhang, Huang, and Bompard 2018). Supervised machine 

learning classification could be used on smart meter data provided some information is 

known about the buildings in the data set, such as the surface area, location, etc. 

However, studies have shown there are very few residential smart meter data sets with 

sufficient information about the houses (Neale, Kummert, and Bernier 2020a).  

Predictors 
(training data)

Response 
(class categories)

Predictive model 
training and validation

Developed 
predictive model

New data Developed 
predictive model

Predicted class 
categories

Input Output

Input Output



The objective of this study is to leverage a virtual smart meter data set in order 

to develop predictive models to predict building characteristics from real electricity 

smart meter data and ultimately improve the building stock characterization process. 

Linear discriminant analysis is evaluated as a technique to perform this task. Predictive 

models are developed for 21 known building parameters using the virtual data set of 

200,000 buildings. The influence of the data set size and the feature selection on the 

classification accuracy is presented. The developed models are applied using a set of 30 

houses with real smart meter data with known building parameters to test the 

generalization of the predictive models. More specifically, this paper aims to: 

1. Demonstrate how LDA can be used to classify electricity smart meter data, 

using a set of virtual smart meter data designed for that purpose; 

2. Illustrate the impact of the data set size and number of features on the 

classification accuracy; 

3. Guide future users of LDA on potential problems when developing predictive 

models on large data sets, with feature selection recommendations for specific 

building parameters; 

4. Demonstrate the limitations of applying real smart meter data to a predictive 

model developed using virtual data. 

5. Present how this approach can be applied for building stock energy model 

development, a current need in industry. 

This paper builds upon a previous work (Neale, Kummert, and Bernier 2019) which laid 

the groundwork for the present study. This journal paper contains entirely new results, 

significantly increased detail on the methods, new forms of presentation of the results, 

additional analysis and conclusions to guide those wishing to use LDA classification. 



2 Literature review 

Data required for housing stock model development is one of the key limiting factors 

for accurate stock energy prediction (Booth, Choudhary, and Spiegelhalter 2012). Smart 

meter data presents a potential untapped opportunity for insight into every residential 

building, but due to privacy reasons it is most often anonymous and without any 

information on the building’s characteristics. A building’s parameters could be 

predicted using classification with a sufficient training set, but to the authors’ 

knowledge no studies have fully evaluated the potential of doing so. 

Following are some works describing common smart meter data analytics 

applications and techniques. The focus of the first portion of the review is to describe 

common methods and practices related to machine learning in building applications, 

followed by smart meter data analytics with a few examples. Next, a review targeting 

previous works in supervised machine learning of smart meter data for the purpose of 

predicting building parameters is performed. While the focus of the authors is 

residential energy consumption, where applicable non-residential cases are examined as 

well. 

2.1 Machine learning in building applications 

Machine learning (ML) can be categorized as supervised ML, unsupervised ML, semi-

supervised ML and reinforcement learning techniques. Sarker (2021) provides a 

comprehensive review of machine learning techniques with descriptions and general 

applications. Supervised learning, which is the focus of this study, can be divided into 

two categories depending on whether the studied variables are discrete or continuous. 

Machine learning on discrete variables is referred to as classification, while for 

continuous variables it is known as regression. There are many reference texts 



describing the statistical derivation of methods in machine learning as well, such as the 

one by Hastie et al. (2009).  

Machine learning has become commonplace for a variety of building 

applications. Djenouri et al. (2019) provide an overview of ML in smart building 

applications, which summarizes a wide variety of statistical methods that are divided in 

two broad categories: occupant-centric and energy/device centric applications. 

Occupant-centric machine learning focuses on occupancy detection, activity recognition 

and preference/behaviour identification. Energy/device-centric applications include 

energy profiling and demand estimation, appliance profiling and fault detection, and 

sensor inference.   

The reviews by Sarker (2021) and Djenouri et al. (2019) provide comprehensive 

descriptions of a variety of ML methods and algorithms. Some specific examples of ML 

applications in buildings are provided here as well. For example, Gładyszewska-

Fiedoruk and Sulewska (2020) applied linear discriminant analysis (LDA) classification 

and artificial neural networks (ANN) on thermal comfort surveys to evaluate occupant 

responses to various building indoor environmental conditions. Esen et al. (2008) use 

ANN and adaptive neuro-fuzzy inference systems (ANFIS) to forecast the performance 

of ground-source heat pumps under a variety of conditions. Li et al. (2016) apply LDA 

to perform fault detection and diagnosis (FDD) on a chiller, which demonstrated the 

effectiveness of multiscale classification for FDD of mechanical systems in buildings. 

These studies illustrate how the use of ML has permeated many facets of the field of 

building engineering, while the focus of the authors is specifically on smart meter data 

analysis. 

2.2 Smart meter analytics 

Wang et al. (2018) performed a thorough review of smart meter data analytics methods. 



Applications identified include load analysis, load forecasting, load management and 

other various subcategories. Techniques include time series analysis, dimension 

reduction, outlier detection, classification, clustering, deep learning, and more. While 

Wang identifies classification as a relevant technique, building characterization is not 

listed in the review. Few cases have been found in the literature of supervised machine 

learning on smart meter data for residential building characterisation. Many works have 

used regression and clustering techniques on thermal and electricity metered data, both 

supervised and unsupervised. Many works are cited by Wang et al. (2018) for interested 

readers, and a few examples are provided here for context.  

Classification and other machine learning (ML) algorithms have been applied to 

smart meter data in recent works, but in many cases in a context of anomaly detection 

(L. Zhang et al. 2019; Himeur et al. 2021; Oprea et al. 2021). These works aim to detect 

unusual meter data that may affect energy analysis techniques, such as load forecasting 

and/or profiling, as well as energy theft detection. ML has been applied in specific 

smart meter applications, such as identifying changes in occupant behaviour via 

metered data pattern recognition, for the purpose of diagnosing at-risk patients in 

distress (Chalmers et al. 2019). Non-intrusive load monitoring (NILM) is another 

frequent application where classification and supervised machine learning are applied 

(Klemenjak 2018). 

Gianniou et al. (2018) applied regression techniques to daily thermal energy data 

to predict temperature setpoint and building envelope characteristics for 14,000 houses 

in Denmark. While classification was not used in their study, properties of a building 

stock are successfully extracted from meter data with some degree of accuracy. The 

study is limited by the information available on each building, as only the weather, 



heating energy and basic building geometry were available to develop linear regression 

models. 

Unsupervised support-vector regression was applied by Westermann et al. 

(2020) on electricity smart meter data to predict heating systems for two sets of 400 

buildings. Clustering techniques were applied to identify different energy signatures 

from metered data to identify heating system types. For a case study applied to British 

Columbia, Canada, the authors were able to accurately predict the distribution of 

heating systems corresponding to the provincial average, within 2% per type. However, 

no actual system data was available to validate the prediction at the building-level.  

Ullah et al. (2020) applied deep learning clustering techniques to monthly 

residential building stock energy data for the purpose of identifying energy consumption 

patterns. The work identifies clusters of energy consumption levels in stock data, and 

also analyzes a single house’s energy consumption over several years. Self-organizing 

maps are employed to cluster the data after a detailed encoding process. Very limited 

information on the buildings is provided by the authors, and the study was primarily 

effective for illustrating the manner in which buildings in the stock consumed 

electricity. 

2.3 Classification of smart meter data for building characterization 

As mentioned previously, works in smart meter data analytics for the purpose of 

building characterization are limited, primarily due to the lack of appropriate smart 

meter data sets for model training. Specifically, large residential electricity metered data 

sets accompanied by building parameters such as the surface area, building type, or the 

number of occupants, are rare. 

Recently a large open-source data set of smart meter data with building meta-

data has been made available for 1636 non-residential buildings in the U.S. (Miller et al. 



2020). Najafi et al. (2021) performed a feature analysis study on the data set using the 

Random Forests classification algorithm to predict principal building use, performance 

and operations strategy. The results show the importance of feature selection and the 

possible classification accuracy that can be obtained by varying the features, but are 

restricted to non-residential buildings. 

The Irish Social Science Data Archive (ISSDA) Commission for Energy 

Regulation (CER) data set of Irish residential dwellings with over 4000 homes with 

smart meter data contains mainly demographic data, though building surface area, 

number of occupants and building type were also included (CER 2012). Beckel et al. 

(2014) performed a classification study on the CER data set, which showed that linear 

discriminant analysis could predict the various class categories with classification 

accuracy between 35% and 80%. The large limitation of the study was that the heating 

and cooling electricity consumption were not included in the data, as these loads were 

covered by other energy sources.  

Carroll et al. (2018) performed a study using the Neural Networks and Elastic 

Net Logistics machine learning techniques on smart meter data, again for the purpose of 

household demographic classification in Ireland. The CER data set was used similarly 

to Beckel et al. (2014), though with different machine learning techniques. What was 

particularly interesting about the Carroll et al. (2018) study was how they tested a 

combination of  21 different feature values representing different aggregated electricity 

consumption values. While some households with a lower number of occupants could 

be accurately classified, in general it was difficult to identify the appropriate 

demographic class category with a high degree of accuracy, at least for the techniques 

studied. 



What the literature reveals is that there are few examples of classification on 

electricity smart meter data that evaluate the capability to predict a building class 

category, such as the heated surface area, based only on the electricity consumption 

values. While many machine learning classification algorithms exist, this study focuses 

on evaluating linear discriminant analysis (LDA) for a wide variety of cases, to test the 

robustness and the possible effects of using LDA on very large data sets. 

2.4 Linear discriminant analysis 

Linear discriminant analysis (LDA) is a robust classification algorithm that uses 

linear projection to establish a decision boundary between two or more data groups. 

This is accomplished by choosing a projection line perpendicular to the decision 

boundary that best separates the data groups by maximizing the distance between the 

means of the data groupings and minimizing the variance of the data sets. A 

discriminant function 𝛿𝛿𝑐𝑐(𝑥𝑥) can be determined for a set of data for a class of category c 

using Equation (1), where the goal is to determine the maximum value of 𝛿𝛿𝑐𝑐(𝑥𝑥). 

𝛿𝛿𝑐𝑐(𝑥𝑥) = 𝒙𝒙𝑇𝑇𝑲𝑲−1𝝁𝝁𝑐𝑐 − 1

2
𝝁𝝁𝑐𝑐𝑇𝑇𝑲𝑲−1𝝁𝝁𝑐𝑐 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑐𝑐) (1) 

where 𝛿𝛿𝑐𝑐(𝑥𝑥) is the discriminant function, 𝒙𝒙 contains the classification data, 𝝁𝝁𝒄𝒄 are the 

mean values of the data set, 𝑲𝑲−1 is the inverse of the pooled covariance matrix, and 𝑝𝑝𝑐𝑐 
is the probability of a new data point belonging to class category 𝑐𝑐. A more detailed 

description and derivation of the components of Equation (1) is provided in Appendix 1.  

Equation (1) expresses the projection of the mean and covariance of the data sets 

on a projection axis and establishes a decision line by maximizing the term to the right 

of the equal sign. Equating the linear projection equations for two class categories 

(𝛿𝛿𝑐𝑐1(𝑥𝑥) = 𝛿𝛿𝑐𝑐2(𝑥𝑥)) results in a linear decision boundary that can be used to classify new 

data points as either class category 𝑐𝑐1 or 𝑐𝑐2, for example. An example of LDA applied 



to energy consumption data with the derivation of the key equations is provided in 

Appendix 1 for interested readers. The example serves to illustrate how LDA can be 

applied to energy data in the context of predicting information about buildings. 

2.5 Summary and paper organization 

As illustrated in the literature review, machine learning has been applied to address a 

variety of building energy problems. Supervised machine learning classification on 

electricity smart meter data has been the subject of very few studies, primarily due to 

the fact that no appropriate data sets exist for predictive model training of building 

characteristics using metered data. A new study on machine learning classification 

using linear discriminant analysis on a virtual smart meter data set is therefore 

presented. 

This paper is organized in a number of sections, with the goal to illustrate the 

supervised machine learning classification of electricity smart meter data. First, the data 

set used for predictive model training and development is described. Next, the 

classification results are presented. A general discussion is then provided to elaborate on 

the outcome of the study and compare the results to previous studies. Finally, some 

concluding remarks are provided.  

3 Data set description 

As described in the literature review, residential data sets for predictive model 

development are very limited in scope. A virtual smart meter (VSM) data set for 

residential buildings was developed by Neale et al. (2020a), which consists of 200,000 

homes with a variety of known physical characteristics. The data set is available for 

anyone to download (Neale, Kummert, and Bernier 2020b). The VSM data allows for a 

variety of parameters and house types to be evaluated.  



The virtual buildings and VSM data were generated using building energy 

simulations with parameters determined based on probability distributions using 

available building stock details. The 200,000 houses represent a subset that is relatively 

close to the distribution of approximately 2 million single-family homes across the 

province of Québec, Canada. Each home is represented by electricity consumption 

values for a full year at 15-minute intervals, i.e. 35,040 data points per building, and 21 

physical characteristics, such as building location, heated surface area, building 

envelope thermal resistance and more. The building parameter classes and categories 

are described in Table 1 (Neale, Kummert, and Bernier 2020a). 



 

Table 1. VSM data class category descriptions (adapted from Neale et al. 2020). PMF: probability mass function, UPD: uniform probability distribution (i.e. no prior knowledge for the building 
stock). Values in square brackets represent the median value for that category.  

Class  Categories Type of 
distribution Description # Values 

Location  
 

7 1: Rimouski 
2: Saguenay 
3: Québec city 
4: Sherbrooke 
5: Trois-Rivières 
6: Montréal 
7: Gatineau 

PMF Region in the province of Québec, Canada, where the building is located. 

Building dimensions and orientation 

Building type 4 1: Single-detached home (DET) 
2: Row house (ROW) 
3: Semi-detached home (SDH) 
4: Other single-attached (OSA) 

PMF Type of home. 

Aspect ratio 5 1: 0.8 

2: 0.9 
3: 1.0 
4: 1.1 
5: 1.2 

UPD Aspect ratio of the home, which refers to the ratio of the width (street-facing 
dimension) to the length. 

Surface area  
(m2) 

5 1: 56-93 [75]  
2: 93-139 [115]  
3: 139-186 [160]  
4: 186-232 [210]  
5: >232 [250]  

PMF Heated surface area bins, from smallest to largest. Note that in addition to 
the surface area category, the exact surface area of the house within that 
bracket is also provided in the VSM data set. Values in square brackets 
represent the mean surface area for that bin. 

Window-to-wall 
ratio 

3 1: 0.1 

2: 0.15 
3: 0.20 

UPD Ratio of window surface area to wall surface area. 



Class  Categories Type of 
distribution Description # Values 

Building rotation 4 1: 0° 

2: 90° 
3: 180° 
4: 270° 

 

UPD Rotation of the building with respect to south (90° increments). 

Building adjacency 4 1: No adjacent buildings 

2: Eastern wall adjacent 
3: Western wall adjacent 
4: Both eastern and western walls  

adjacent 

UPD Configuration of outdoor walls directly adjacent to another building. 
“Eastern” and “Western” are in reference to the front of the home being 
south facing.  

Floors 2 1: 1-storey 

2: 2-storey 
PMF Number of floors in the home. 

Building envelope 

Wall thermal 
resistance  
(m2KW-1) 

4 1: 0.5-1.5 [1.0]  
2: 1.5-2.5 [2.0]  
3: 2.5- 4.5 [3.0]  
4: >4.5 [5.0]  

PMF Wall thermal resistance value. Values in square brackets represent the mean 
value for that bin. 

Roof thermal 
resistance  
(m2KW-1) 

6 1: 0.5-1.5 [1.0]  
2: 1.5-2.5 [2.0]  
3: 2.5-3.5 [3.0]  
4: 3.5-4.5 [4.0]  
5: 4.5-5.5 [5.0]  
6: >5.5 [8.0] 

PMF Roof thermal resistance value. Values in square brackets represent the mean 
value for that bin. 

Foundation thermal 
resistance  
(m2KW-1) 

4 1: 0.5-1.5 [1.0]  
2: 1.5-2.5 [2.0]  
3: 2.5-3.5 [3.0]  
4: 3.5-4.5 [4.0]  

PMF Foundation thermal resistance value. Values in square brackets represent the 
mean value for that bin. 

Overall building 
thermal resistance 
(m2KW-1) 

3 1:  <1.56 
2:  1.56-2.25 
3:  >2.25 

UPD Derived from the roof, wall and foundation thermal resistance values. 



Class  Categories Type of 
distribution Description # Values 

Air leakage area  
(cm2 @4Pa) 
 

5 1: 248  
2: 406  
3: 556  
4: 775  
5: 1426  

PMF Used to characterize air infiltration. 

Window glazings 3 1: Single-glazed windows 
2: Double-glazed windows 
3: Triple-glazed windows 

PMF Number of window glazings used in the building. 

Heating, air conditioning and domestic hot water 
Air conditioning 3 1: No air conditioning 

2: Air-source heat pump 

3: Window air conditioner 

PMF Air conditioning system used in the building, if any. 

Heat pump 2 1: No heat pump 

2: Air-source heat pump + Auxiliary 
PMF Heat pump type. 

Auxiliary heating 
type 

2 1: Electric 
2: Non-electric 

PMF Auxiliary heating system type. 

Occupancy information 

Occupancy profile 
number 

15 1-15: Occupant profiles numbered 1 to 15 UPD Stochastic occupancy load profiles used in the building simulation. 15 
distinct stochastic profiles were used. 

Number of 
occupants 

5 1: 1 occupant 

2: 2 occupants 
3: 3 occupants 
4: 4 occupants 
5: 5 occupants 

PMF Number of occupants in the home. 

Other parameters 

DHW type 2 1: Electric 
2: Non-electric 

PMF Domestic hot water heater type. 

Pool 2 1: Pool 
2: No pool 

PMF Pool type. 

Spa 2 1: Spa 
2: No spa 

PMF Spa type. 



Each house from the Neale et al. (2020a) VSM data set is accompanied by the 

corresponding category for the input parameters described in Table 1. The house’s 

electricity consumption is therefore paired with a number of different building 

parameters that can be used for predictive model development.

3.1 Example data

The electricity consumption of a house depends on the combination of the parameters 

described in Table 1. In order to present classification results, it is relevant to discuss 

the smart meter data used to train the predictive models. If the smart meter data from the 

VSM data set is aggregated to annual electricity consumption it can be plotted in terms 

of the heated surface area category, as illustrated in Figure 2.

Figure 2. Annual electricity consumption of VSM data sorted by surface area category. Each point represents one 
house with distinct characteristics.

The data in Figure 2 illustrates how each heated surface area category has a wide 

range of annual electricity consumption values from the data set. There are gaps 



between the surface area categories because the range of values for each category were 

generated with a Gaussian distribution, making fringe values for a given category less 

likely, as illustrated in the zoomed-in portion of Figure 2. While the categories are 

somewhat distinct in the figure, it is difficult to determine the size of a house with only 

the annual electricity consumption. For example, there are houses in all size categories 

with electricity consumption equal to 20,000 kWh, which indicates that further 

information is required to accurately classify the houses based on annual electricity 

consumption alone. 

 

 

Figure 3. Electricity consumption for houses with different characteristics for January (top) and July (bottom) hourly 
data.  
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The electricity consumption values at hourly aggregation are illustrated in 

Figure 3 for three houses from the VSM data set for a week of data in January and July. 

A medium house (surface area category 3) without electric heating is shown, which 

provides an understanding on an electricity consumption profile based primarily on 

internal loads. Second, a medium house with electric baseboard heating illustrates the 

variation in electricity consumption when the heating load is included. Finally, a large 

house (surface area category 5) is compared to the others, with comparatively higher 

electricity consumption due to the increased overall loads.  

The hourly-aggregated data in Figure 3 shows many peaks and valleys as the 

internal loads and the outdoor conditions vary. As indicated in the figure, distinct 

differences are noticeable in the winter electricity consumption based on the 

characteristics of the houses, such that visually they can be distinguished based on their 

size (medium vs. large) or by their heating system type (electric vs. non-electric). These 

differences are what the classification process aims to identify and associate with the 

various class categories. The summer electricity consumption illustrates that the profiles 

for the three illustrated houses are similar and not distinguishable by size or by heating 

system type, which is logical given the lack of heating load in July for the given 

building stock.  

4 Classification methodology 

As the data in Figure 2 illustrates, annual electricity consumption is insufficient for 

visual classification of homes based on the surface area category, except for extreme 

cases. A predictive model would need to distinguish the impact of the other 

characteristics by looking at the electricity smart meter data without knowing those 

other class categories. For example, a house with 5 occupants has higher variable 

internal loads than a house with 1 occupant, which should aid in distinguishing between 



a small house with a large family (high base load, lower heating load) when compared 

to a large house with a single occupant (low base load, higher heating load).  

Linear discriminant analysis as a classification technique for smart meter data is 

evaluated using a set of 200,000 virtual buildings with a variety of known geometries, 

internal loads, and heating, ventilation and air-conditioning (HVAC) system parameters. 

First, a brief description of the methodology behind the predictive model development 

is provided. The classification accuracy results for a number of scenarios are presented 

for linear discriminant analysis. Some specific cases are illustrated in more detail. The 

time required to produce predictive models based on the number of features is 

discussed. The impact of the number of buildings is then presented, which illustrates 

whether 200,000 buildings are required to accurately classify building parameters for 

the studied residential building stock. The effectiveness of the predictive models 

developed with the VSM data set are evaluated by applying real smart meter data to the 

models and comparing the predicted building parameters with known values. Finally, 

electricity consumption data for a small set of real houses are used to evaluate the 

prediction capability of the developed models.  

4.1 Predictive model development methodology 

Linear discriminant analysis is evaluated as a method to perform machine learning 

classification of smart meter data using building characteristics as response variables for 

electricity consumption predictors. A predictive model is developed using the following 

general methodology: 

1. Select the number of buildings, i.e. 200,000 dwellings. 
2. Select the number of features, i.e. hourly annual data has 8760 values and 

therefore that many features. 
3. Build the predictor data matrix from the feature data of each building. 



4. Build the response vector from the class categories of each building for the 
studied class, i.e. the surface area bin for the Area class for each dwelling. 

5. Develop the predictive model from the predictor and response data. 

The process above is repeated for a variety of configurations. The Matlab Statistics and 

Machine Learning Toolbox is used for all classification results in this study (Mathworks 

Inc. 2018). 

4.2 Classification accuracy 

The accuracy of a predictive model is determined based on the number of correct 

predictions using a validation scheme, as described in Equation (A-12). Predictive 

models are developed using linear discriminant analysis (LDA) for each building 

parameter included in the VSM data set. In addition, multiple feature scenarios are 

presented to study the effect of aggregating the VSM data on the classification 

accuracy. Scenarios I through IV reflect data for a full year at different time aggregation 

intervals (monthly, weekly, daily, hourly). Classification for a full year of smart meter 

data with subhourly values was not found to be possible due to computer memory 

limitations and the size of the resulting matrix equation to resolve the classification 

problem. Scenarios V through VIII are classification results for the month of January 

with different features (weekly, daily, hourly, and subhourly). Scenarios IX through XII 

reflect the same feature combinations, but for the month of July. The months of January 

and July were chosen to evaluate the impact of reducing the data set size and to test the 

prediction capability of the classification algorithms for building parameters with low or 

no impact of those parameters during those periods. For example, evaluating the 

classification of air conditioning using winter data should result in poor classification, 

since single-family homes typically have zero air conditioning load during the winter 

months. In addition, it was possible to use subhourly data for the monthly cases, since 



the number of features was significantly smaller (2976 features) than the annual case 

(35,040 features). Note that all 200,000 buildings were used for classification, though 

the impact of the building set size is presented further in the results. 

The classification accuracy (CA) results are presented in Table 2. Each accuracy 

value, from 0 to 1, reflects the prediction accuracy for a single predictive model. A 

value of 0.9 indicates that the class category of 90% of buildings in the data set were 

correctly predicted with that predictive model. The color scale in the table reflects the 

range of values within that scale, with red representing close to 0, and green 

representing close to 1. The best result for each class is indicated with a black border, 

favoring cases with less features if there is a tie.  

The CA results are compared to the accuracy of performing a random guess 

(RG), which is based on the chance of guessing correctly without knowing any details 

about the building stock parameters. The RG value is simply 1 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐⁄ , where 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 is the 

number of categories in that class, which should be the absolute minimum threshold for 

classification accuracy. The CA results are above the RG in all cases, indicating the 

classification algorithm is better than blind guessing. Since the probability distributions 

for the VSM data set are provided by Neale et al. (2020a), the value of a random guess 

based on prior knowledge (RGPK) can also be determined based on those distributions. 

This value accounts for the probability of some class categories being more prevalent, 

which results in a higher chance to guess the correct outcome. Not all parameters had 

prior knowledge when the VSM data set was developed and therefore some RGPK 

values are not included in Table 2. 

In order to facilitate the comprehension of the results in Table 2 an example is 

provided. The Area class has five categories, which represent five surface area bins 

described in Table 1. The probability of randomly guessing an area bin without any 



prior knowledge would be 1 in 5, or RG = 0.20. The Area class values were generated 

using a probability mass function that depended on the type of home (detached, semi-

detached, etc.) and the number of floors in the home (Neale, Kummert, and Bernier 

2020a). Since those profiles are available, the probability of correctly guessing the class 

category can be calculated, and in the case of the Area class RGPK = 0.279, slightly 

better than the blind guess value. The classification accuracy for Scenario I – monthly 

data for a full year of electricity consumption – is equal to 0.457, which is somewhat 

better than randomly guessing the category. By increasing the number of features to use 

hourly data, which corresponds to Scenario IV in Table 2, the accuracy improves to 

0.793. For this case, the predictive model correctly predicts the surface area category for 

4 out of 5 homes in the data set.  

To expand upon the Area class example, the confusion matrices (CM) for 

Scenarios I and IV are illustrated in Figure 4. The CM provides an understanding of the 

proportion of correct and incorrect predictions of the predictive model for each 

category. If a model results in only one category being correctly classified then the 

model is not very useful when the goal is to identify building characteristics spanning 

multiple categories.  
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Figure 4. Confusion matrix for Scenario I (left) and Scenario IV for the Area class categories, labelled 1 through 5. 
TP: true positive, TN: true negative. Bolded values illustrate the correctly predicted cases. 



Correct predictions in a confusion matrix are placed in the main diagonal where 

Predicted category = True category. The confusion matrix for Scenario I in Figure 4 

illustrates that categories 1 and 2 were incorrectly assigned to categories 3 to 5. This 

indicates that with monthly features, the difference in electricity consumption is too 

subtle for the predictive model to distinguish the smallest house size categories. The 

True Positive (TP) and True Negative (TN) columns indicate the proportion of correctly 

and incorrectly predicted buildings in the data set, respectively. In Scenario IV there is a 

much more even spread of building predictions, and in most cases the results are within 

one size category of being correctly predicted. The corresponding classification 

accuracy values can be calculated from the confusion matrices by summing the diagonal 

values, which are the correct predictions, and dividing by the number of houses in the 

data set, which in this case is equal to 200,000. For example, the case on the left of 

Figure 4 has 91,355 correct predictions (63,428 + 4620 + 23,487) out of 200,000 total 

houses, and therefore 0.457 classification accuracy.



Table 2. Classification accuracy results. ncat: number of category values for that class, RG: random guess, RGPK: random guess with prior knowledge. Results with a dark outline indicate the 
best result for that class. 

Scenario: I II III IV V VI VII VIII IX X XI XII    
Period: 1 year 1 year 1 year 1 year Jan. Jan. Jan. Jan. July July July July    
Interval: Monthly Weekly Daily Hourly Weekly Daily Hourly 15-min. Weekly Daily Hourly 15-min.    
Features: 12 52 365 8760 4 31 744 2976 4 31 744 2976 ncat RG RGPK 
Location 0.840 0.938 0.970 0.973 0.727 0.929 0.964 0.965 0.598 0.717 0.948 0.956 7 0.143 0.386 
Physical properties                 

Building type 0.801 0.802 0.859 0.928 0.801 0.799 0.861 0.899 0.801 0.801 0.807 0.812 4 0.250 0.662 
Aspect ratio 0.201 0.201 0.201 0.206 0.201 0.201 0.202 0.200 0.201 0.201 0.199 0.200 5 0.200 * 
Area 0.457 0.459 0.574 0.793 0.461 0.456 0.649 0.775 0.375 0.416 0.540 0.577 5 0.200 0.279 
WWR 0.464 0.516 0.589 0.829 0.368 0.469 0.750 0.782 0.348 0.364 0.525 0.572 3 0.333 * 
Rotation 0.259 0.265 0.281 0.286 0.253 0.259 0.290 0.286 0.249 0.250 0.268 0.270 4 0.250 * 
Adjacent buildings 0.801 0.802 0.843 0.894 0.801 0.799 0.845 0.872 0.801 0.801 0.807 0.812 4 0.250 0.655 
Number of floors 0.682 0.720 0.877 0.940 0.635 0.689 0.907 0.922 0.566 0.606 0.808 0.843 2 0.500 0.510 
Building envelope                 

Wall thermal resistance 0.590 0.607 0.667 0.838 0.590 0.591 0.755 0.792 0.590 0.590 0.634 0.657 4 0.250 0.432 
Roof thermal resistance 0.241 0.266 0.360 0.656 0.238 0.241 0.488 0.552 0.215 0.236 0.301 0.334 6 0.167 0.186 
Foundation thermal resistance 0.628 0.698 0.849 0.908 0.538 0.600 0.841 0.853 0.482 0.544 0.803 0.819 4 0.250 0.420 
Overall thermal resistance 0.491 0.539 0.632 0.756 0.429 0.464 0.677 0.711 0.363 0.438 0.622 0.643 3 0.333 * 
Leakage 0.351 0.418 0.590 0.655 0.332 0.381 0.658 0.642 0.217 0.248 0.436 0.482 5 0.200 * 
Window glazings 0.902 0.900 0.897 0.959 0.902 0.902 0.932 0.949 0.902 0.902 0.895 0.900 3 0.333 0.818 
HVAC                 

Air conditioning 0.777 0.817 0.902 0.981 0.739 0.772 0.819 0.817 0.698 0.763 0.926 0.953 3 0.333 0.509 
Heat pump 0.952 0.948 0.988 1.000 0.910 0.946 0.997 0.999 0.838 0.843 0.923 0.924 2 0.500 0.729 
Auxiliary heating 0.986 0.993 1.000 1.000 0.987 0.984 1.000 1.000 0.731 0.799 0.959 0.959 2 0.500 0.607 
Occupancy details                 

Occupants 0.506 0.799 1.000 1.000 0.370 0.607 1.000 1.000 0.416 0.748 1.000 1.000 5 0.200 0.246 
Profile number 0.270 0.892 1.000 1.000 0.139 0.622 1.000 1.000 0.252 0.808 1.000 1.000 15 0.067 * 
Other parameters                 

DHW type 0.960 0.963 1.000 1.000 0.957 0.958 1.000 1.000 0.772 0.817 1.000 1.000 2 0.500 0.649 
Pool 1.000 1.000 1.000 1.000 0.835 0.835 0.835 0.833 0.992 0.994 1.000 1.000 2 0.500 0.725 
Spa 0.919 0.950 1.000 1.000 0.900 0.900 1.000 1.000 0.903 0.904 0.910 0.894 2 0.500 0.820 

* No prior knowledge for the probability distribution for the category values existed for this parameter, therefore no improvement can be made over simply randomly guessing the outcome.   
 



The results in Table 2 illustrate a wide range of classification accuracy values 

that depend on the scenario and the class. Some classes are not well classified, such as 

the building rotation or aspect ratio. LDA does not perform any better than randomly 

guessing for these cases, which indicates that these parameters in the VSM data set have 

little influence on the smart meter data. Other classes have significantly better accuracy, 

especially as the number of features increases. The number of occupants and the 

occupancy activity level is easily classified with daily and hourly data, which is likely 

due to the programmed nature of the profiles and is one of the limitations of simulation-

based occupancy models. 

In order to visualize the impact of the number of features on the classification 

accuracy, the data in Table 2 can be expressed in graphical form. The CA results for the 

location, area, air infiltration rate and overall envelope thermal resistance are illustrated 

in Figure 5. 

  



  

   

  
Figure 5. Classification accuracy per feature for the location, heated surface area, air infiltration and overall 
thermal resistance parameters. RG: random guess, RGPK: random guess based on prior knowledge. 

The accuracy for LDA predictive models typically increases with a higher 

number of features, indicating in many cases additional granularity in the electricity 

consumption is beneficial for classification for building parameters. In some cases, the 

accuracy reaches a plateau at higher feature values, indicating that there is little gain for 

increasing the complexity of the predictive model, such as for the Location parameter. 

For other parameters, such as the Area, increasing the data granularity further could be 

beneficial, but at significant computational cost. 

Finally, the classification accuracy for January and July smart meter data is 

illustrated in Figure 6 for all cases where 𝑎𝑎𝑎𝑎𝑠𝑠�𝐶𝐶𝐶𝐶𝑗𝑗𝑐𝑐𝑗𝑗 − 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� > 0.005, i.e. if there is 
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a meaningful difference between the January and July classification results with the 

same number of features. Other cases where −0.005 ≤ �𝐶𝐶𝐶𝐶𝑗𝑗𝑐𝑐𝑗𝑗 − 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� ≤ 0.005 are 

set equal to ±0.005 for visibility but are considered to have a negligible difference for 

practical purposes. Figure 6 illustrates whether there is a difference between summer 

and winter classification by qualitatively comparing the class results. Each bar in Figure 

6 represents one pair of CA results that demonstrate the improvement in accuracy using 

summer or winter data for classification. Results on the negative x-axis illustrate cases 

where the July data resulted in better classification, while results on the positive x-axis 

demonstrate cases where January data offered better outcomes. The bar length is a 

relative difference and thus does not illustrate the absolute accuracy, though these can 

be obtained in Table 2.  

The results in Figure 6 demonstrate a logical link between the class and the 

preferred data set to use for classification, when choosing between available winter or 

summer data. Parameters that impact the heat gain and losses in a home are better 

classified using January data, as the larger temperature difference between indoor and 

outdoor leads to proportionately larger heat losses, and therefore more easily detectable 

differences between the class categories. Similarly, systems related to the heating load 

of a house are better classified with winter data. Domestic hot water loads, which are 

tied to ground water temperature, are also better classified in winter.   



 

Figure 6. Comparison of January and July classification accuracy 

Some classes are better classified with summer data, such as the seasonal air 

conditioning and pool loads. Occupancy-driven internal loads are easier to detect in 

summer periods due to the lower or non-existent effect of the cooling loads during these 

periods. The classification process appears to have an easier task at differentiating 

different occupancy patterns and number of residents using July data. The results in 

Figure 6 illustrate that it is worth considering what parameter is being classified when 

choosing between seasonal smart meter data sets. 

4.3 LDA predictive model development time 

Increasing the number of features in a classification problem will exponentially increase 

the size of the matrix equation required to solve for the classification boundaries, 

resulting in increased computation time. The time to compute each predictive model 
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result in Table 2 for each feature scenario was recorded. The average time per feature 

across all classes is illustrated in Figure 7. Classes with a higher number of categories 

tend to take longer as there are additional classification boundaries between each 

category. All predictive model development was performed on an Intel Core i9-7920X 

processor @2.9 GHz, 128 GB of RAM @2133 MHz and a SATA III solid-state hard 

drive. 

 

Figure 7. Average model computation time based on the number of features 

As the number of features increases, the time to compute the predictive model 

increases exponentially. For an annual predictive model with hourly data, the average 

computation time is approximately 50 minutes. It should be noted that using 5-fold 

cross-validation significantly increases the overall time, as it repeats the predictive 

model process for each fold, using 80% of the data for training and 20% for validation. 

In addition, the parallel processing features of the Matlab Parallel Computing Toolbox 

are used to expedite the calculation process for the presented results (Mathworks Inc. 

2018). The chief limitation of the predictive model development is not the time to 
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resolve the model but the quantity of random access memory (RAM) required to store 

and process the data, with 128 GB RAM being insufficient for some cases. 

4.4 Impact of data set size on classification accuracy 

The ratio of the data set size to the number of features influences the classification 

accuracy (Hua et al. 2005). In the case of the present study, the number of buildings in 

the VSM data set determines the size and the aggregation interval determines the 

number of features. By testing various subsets of buildings for monthly, weekly, daily 

and hourly electricity consumption, the range of classification accuracy values is 

illustrated in Figure 8. The y-axis describes the classification accuracy and the x-axis, 

which is on a logarithmic scale, describes the number of buildings used to develop the 

predictive models for classification. The range of values represented by the shaded area 

illustrates the effect of developing a predictive model with different sets of buildings. 

The smaller the amount of buildings, the more likely the chance of a statistically 

unrepresentative sample, which results in highly variable classification accuracy.  

For example, Figure 8(a) shows that testing various sets of 10 buildings using 

monthly data for the Area class resulted in classification accuracy values ranging from 

0.00 to 0.78 (i.e. the range of values plotted on the y-axis). This is due to the effect of 

the very small sample of buildings and high variability in characteristics of those 

buildings. Conversely, sets of 5000 buildings with daily data (notation in Figure 8(c)) 

resulted in a much smaller range of values for the Area class, from 0.486 to 0.516. The 

values at the extreme right of each curve in Figure 8 correspond to those in Table 2, for 

Scenarios I through IV for the Area class. For the latter example of Figure 8(c), which 

corresponds to Scenario III (1 year of daily features) for Area, the classification 

accuracy is equal to 0.574. 



Figure 8. Area classification accuracy by building data set size for (a) monthly (12), (b) weekly (52), (c) daily (365) 
and (d) hourly (8760) features. b: number of buildings in data set, f: number of features, CA: classification accuracy.

The large range in classification accuracies for a smaller number of buildings 

can be explained by the likelihood of obtaining the correct predictions by chance. As the 

number of buildings increases and the characteristics diversify in the data set, the 

predictive model development stabilizes. This transition occurs when the number of 

buildings (𝑎𝑎) is approximately equal to the number of features (𝑓𝑓), or at 𝑎𝑎/𝑓𝑓 ≅ 1, which 

is represented in the figure as the transition point between the lighter and darker shaded 

areas in each graph. The monthly case has only one shaded region as the classification 

process requires more than 12 buildings to be effective, and therefore 𝑎𝑎 𝑓𝑓 > 1⁄ for all 

developed predictive models for this case. As the number of buildings used in the data



set further increases, the range of classification accuracy values narrows and the mean 

accuracy steadily increases, as depicted in Figure 8. 

For smart meter data, it is therefore important to have a sufficiently sized sample 

of buildings to train the model if reliable classification results are desired. With hourly 

data, this indicates at least 8760 buildings with a variety of characteristics are required. 

Regardless of the data aggregation scheme used, the classification accuracy stabilized 

with additional buildings and increased for the daily and hourly feature cases. The 

curves illustrating the mean values of the accuracy demonstrate the increased 

performance based on the number of buildings.  

4.5 Application of the developed predictive models on real smart meter data 

The predictive model development process is illustrated in Figure 1, which describes 

how a developed model can be used to predict category values for new data. Using real 

smart meter data as inputs to a model developed with virtual data has some limitations. 

As an example, a virtual data set based on building energy simulations require 

occupancy models that inevitably differ from real occupants. These differences can 

result in unreliable classification, as the underlying assumptions in the virtual model can 

never perfectly match the reality. However, as mentioned in the literature review, there 

are currently no appropriate data sets based on real buildings to explore classification of 

building characteristics, and thus virtual smart meter data sets are the best option for 

now.  

In order to present some of the limitations inherent to classification and guide 

future research in supervised machine learning of smart meter data, the predictive 

models developed and presented in Table 2 are used to predict building parameters for 

30 houses with measured smart meter data, subsequently referred to as real smart meter 

(RSM) data. This general approach is described in Figure 1, where new predictor data is 



input to a predictive model in order to determine the class category for that data. In this 

case, the RSM data is input to the developed models using the VSM data set, which 

provides an evaluation of the generalization of the predictive models (Shmueli 2010). 

On average the RSM data was missing 3% of electricity consumption data, 

which were filled using recommended metered data processing techniques (Fowler et al. 

2015). For some building characteristics, the true class values for the houses in the RSM 

data set are available as well, which are used to compare to the predicted categories. 

The data for the VSM and RSM sets were both for the calendar year 2016. The 

characteristics of the 30 RSM houses are presented in Table 3. All houses are located in 

Location 5: Trois-Rivières (Table 1). 

Table 3. RSM house characteristics. AC: air conditioning. Cat: class category according to Table 1.  

House 
Area 

Occupants Air 
conditioning Pool Spa Window 

glazings m2 Cat 
1 191.4 4 4 No AC Pool No spa Double 
2 191.4 4 2 Heat pump No pool No spa Double 
3 198.2 4 4 No AC Pool No spa Double 
4 180.6 3 5 Heat pump No pool No spa Double 
5 106.7 2 2 No AC No pool No spa Double 
6 145.7 3 4 Heat pump No pool No spa Double 
7 162.8 3 1 No AC No pool Spa Double 
8 162.1 3 2 No AC Pool No spa Double 
9 214.2 4 5 No AC Pool Spa Double 
10 204.9 4 4 No AC Pool No spa Double 
11 229.5 4 5 Heat pump No pool Spa Double 
12 181.8 3 4 No AC Pool No spa Double 
13 334.5 5 6* No AC Pool No spa Double 
14 258.7 5 4 No AC No pool No spa Double 
15 185.8 3 4 Heat pump No pool Spa Double 
16 139.4 3 2 Heat pump No pool Spa Triple 
17 204.0 4 5 No AC Pool No spa Double 
18 188.0 4 1 Heat pump No pool No spa Double 
19 152.2 3 2 No AC No pool Spa Double 
20 268.4 5 4 No AC No pool No spa Double 
21 179.8 3 2 Heat pump Pool No spa Double 
22 152.9 3 3 No AC No pool Spa Double 
23 151.1 3 3 Heat pump No pool Spa Double 
24 170.0 3 2 No AC No pool Spa Double 
25 188.8 4 3 Heat pump Pool No spa Double 
26 167.2 3 6* Heat pump Pool No spa Double 
27 346.3 5 2 Heat pump Pool Spa Double 
28 330.3 5 4 No AC No pool No spa Double 
29 144.0 3 1 No AC No pool No spa Double 
30 188.1 4 4 Heat pump No pool No spa Double 

* The VSM data set only contained data for up to 5 occupants, therefore houses with 6 occupants are 
considered to have 5 instead. 



The classification approach for the seven known RSM house parameters is 

described in Table 4. Class categories are assigned to each house based on the VSM 

parameters in Table 3. Classification accuracy is determined based on the similarity of 

the predicted category when compared with the true category, with exact matches 

described as “correct predictions” and with similar matches described as “close 

predictions”. The definition of “close” varies by parameter and is included in the results 

to illustrate when classification obtains outcomes equal to or near the correct prediction. 

For example, if the number of occupants is predicted one higher or lower than a house’s 

true occupancy, this is considered a close prediction. Some parameters, such as whether 

a pool is installed in the home, have no “close” option, as they are either correct or 

incorrect. 

Table 4. House data set known parameters and definitions for a correct and close prediction 

Parameter Correct prediction Close prediction 
Location Correct location predicted Predicted as the correct location or 

another location with similar heating 
degree-days (HDD). 
±130 HDD 

Area Correct area category predicted Predicted as the correct area category 
or one size category larger or smaller. 
±40 m2 

Occupants Correct number of occupants 
predicted 

Predicted as the correct number of 
occupants or one occupant more or less 
than the correct number. 
±1 occupant 

Air conditioning Correct AC type predicted Predicted as the correct air AC type, or 
if a heat pump predicted as a window 
air conditioner, or vice versa. 

Pool Presence of a pool correctly 
predicted 

Not applicable 

Spa Presence of a spa correctly 
predicted 

Not applicable 

Window glazings Correct number of window glazings 
predicted 

Not applicable 

 

The classification accuracy (CA) is determined as described in Equation (A-12), 

which is based on the correct predictions (CP) divided by the total predictions (TP). If 

applicable, close predictions are substituted in Equation (A-12) for the correct 

predictions. Classification accuracy for the RSM data is denoted as CARSM, which are 



presented in Table 5. CARSM results are compared to the accuracy of randomly guessing 

the categories of each class based on the prior knowledge of the building stock from the 

VSM data set. The RGPK is used as a reference since the RSM houses are part of the 

same building stock as the VSM data. 

The results in Table 5 illustrate the classification accuracy when the real smart 

meter data is input to the predictive models developed with the VSM data and the 

predicted class category is compared to the real class category. As an example, an 

accuracy of 0.433 indicates that 13 out of 30 houses in the RSM data set had the 

category correctly predicted. This value can be directly compared to the RGPK column 

to evaluate the performance of LDA when compared to a random prediction. If 

CARSM > RGPK, the classification algorithm represents an improvement over a random 

guess. 

Classification of the real smart meter data with linear discriminant analysis has 

variable accuracy depending on the class, the number of features, and the period used 

for the smart meter data. There is at least one scenario for each class that resulted in a 

better prediction than randomly guessing. The average CA improvement for the best 

scenario for each class is equal to 0.187 and ranges from 0.078 to 0.355. Scenarios with 

less features generally performed better, which indicates that aggregating the electricity 

consumption improves the classification accuracy. This is likely due to the way internal 

loads were generated in the VSM data set used to train the predictive models. Since it is 

unlikely to match occupant behavior to real data at a subhourly or hourly frequency, 

aggregating those data for classification seems to be the more reliable approach.   



Table 5. Classification accuracy results for the real smart meter data set. Best classification results have bold text and borders. 

Class Prediction 
type 

Scenario (period-aggregation-features) 
RGPK 1 year-M-

12 
1 year-W-

52 
1 year-D-

365 
1 year-H-

8760 Jan-W-4 Jan-D-31 Jan-H-744 Jan-SH-
2976 July-W-4 July-D-31 July-H-

744 
July-SH-

2976 

Location 
Correct 0.433 0.433 0.267 0.267 0.000 0.167 0.233 0.167 0.000 0.067 0.100 0.033 0.078 
Close 0.667 0.667 0.633 0.700 0.167 0.567 0.633 0.567 0.233 0.233 0.533 0.400 0.282 

Area 
Correct 0.467 0.233 0.167 0.167 0.500 0.500 0.133 0.100 0.467 0.400 0.133 0.133 0.300 
Close 0.833 0.533 0.433 0.500 0.867 0.867 0.367 0.433 0.833 0.767 0.400 0.433 0.433 

Occupant 
Correct 0.300 0.167 0.133 0.333 0.267 0.100 0.267 0.167 0.400 0.300 0.267 0.200 0.216 
Close 0.667 0.700 0.667 0.567 0.433 0.400 0.533 0.567 0.567 0.600 0.667 0.667 0.312 

Air conditioning 
Correct 0.333 0.300 0.500 0.533 0.500 0.567 0.367 0.333 0.533 0.533 0.500 0.433 0.488 
Close 0.433 0.433 0.500 0.700 0.500 0.567 0.400 0.467 0.533 0.533 0.533 0.467 0.033 

Pool Correct 0.600 0.600 0.600 0.600 0.600 0.600 0.500 0.600 0.800 0.667 0.567 0.467 0.563 
Spa Correct 0.500 0.400 0.533 0.500 0.667 0.633 0.400 0.733 0.600 0.533 0.467 0.467 0.650 
Window glazings Correct 0.967 0.900 0.600 0.100 0.967 0.967 0.267 0.167 0.967 0.967 0.100 0.100 0.873 

 



In summary, linear discriminant analysis had mixed results predicting the class 

categories for a number of building characteristics for a real small data set. The 

combination of period and aggregation of the electricity consumption that resulted in 

the best classification result varied by parameter, which further supports the need for 

additional studies in classification of smart meter data. The data set of real houses used 

in the present study was quite limited in the number of houses available and the amount 

of known parameters that could be used for validation purposes. In addition, a non-

negligible fraction of data was missing for the real houses, which certainly affects the 

classification prediction. The impact of the missing data is supported by the fact that 

aggregating the electricity data often resulted in better predictions. Nevertheless, LDA 

did demonstrate an improvement over random guessing for all parameters, at least for 

specific data scenarios. A larger, more detailed RSM data set would provide a better 

understanding of the link between the classification accuracy, number of features, data 

set size and number of buildings in the data set.  

5 General discussion 

The literature review illustrated the prevalence of machine learning in building 

applications and the lack of previous studies in classification of buildings based on 

smart meter data. The study of Beckel et al. (2014) compared multiple classification 

techniques to predict building characteristics using smart meter data, though most 

classes were related to occupancy. LDA predicted the floor area category (<100 m2, 100 

to 200 m2 or >200 m2) for homes in the Beckel study with an accuracy of 45%, 

compared with up to 80% in this study. For building type (detached or attached), 

Beckel’s study classified houses with 60% accuracy, compared to 93% in this study. 

The number of occupants was predicted with approximately 70% accuracy, compared to 

100% in this study. Carroll et al. (2018) performed a similar analysis as Beckel for 



occupancy classification, averaging 61% accuracy with different classification 

algorithms.  

This study improves upon previous classification works by systematically 

analysing the impact of a significant number of scenarios on the classification problem, 

which guides future classification modelers on the correct way of approaching smart 

meter data classification. The open-source VSM data set used to train the predictive 

models represents a new source of data for classification problems that has yet to be 

fully explored. Until a real smart meter data set with a variety of measured and surveyed 

building characteristics is released, the virtual data represents the best data set for smart 

meter classification studies.  

While this paper provides a detailed evaluation of linear discriminant analysis 

using the VSM data, further work evaluating other classification algorithms using 

additional metrics would guide those seeking to perform supervised machine learning 

classification. Other algorithms may improve the results for smart meter data 

classification. When developing a virtual smart meter data set for classification, some 

parameters may not be worth attributing distinct class categories, such as differentiating 

between heat pumps and window air conditioners with similar coefficient of 

performance (COP) values. Care must be given when attributing class categories and 

when modeling specific physical behavior, such as the properties of windows installed 

in a house, as these can only be identified by classification if they were included in the 

original data set. In addition, a detailed monitoring campaign of real houses with 

surveyed building characteristics would greatly assist in the validation process of 

classification studies.  

 

 



 

6 Conclusion 

Building stock energy modeling requires a significant amount of information to 

accurately represent the wide range of building types. This paper seeks to illustrate how 

supervised machine learning classification with linear discriminant analysis (LDA) can 

accurately predict building parameters from electricity smart meter data. The virtual 

smart meter (VSM) data developed by Neale et al. (2020a) is a residential smart meter 

data set with detailed information on building characteristics, such as building surface 

area, thermal resistance of the building envelope, occupants, air leakage rate, etc. The 

VSM data was developed with classification in mind, and the present study uses LDA to 

evaluate the effectiveness of classification to predict building parameters based solely 

on electricity smart meter data. Data periods and aggregation intervals are varied to test 

a number of different feature combinations for each class. 

Linear discriminant analysis can effectively classify electricity smart meter data, 

with classification accuracy values that depend on the parameter studied and the number 

of features. The building data set size has an important influence on the reliability of the 

classification outcome. At the very minimum, it is essential to have at least as many 

buildings (𝑎𝑎) as the number of features (𝑓𝑓) in the data set (𝑎𝑎/𝑓𝑓 > 1). As this ratio 

increases, the classification accuracy for LDA tends to reach an asymptotic value when 𝑎𝑎 ≫ 𝑓𝑓. This indicates that for a building data set with highly variable characteristics and 

for parameters better classified with hourly or subhourly features, many buildings are 

required to develop a reliable predictive model.  

Classification accuracy is related to the impact of a building parameter on the 

electricity consumption. Parameters such as building rotation and aspect ratio are not 



well classified by LDA. This could be related to the way they are implemented in the 

building simulation environment used to create the VSM data set. Nevertheless, LDA 

performs no better than randomly guessing for these two particular parameters.  

Other parameters had significantly better classification accuracy than randomly 

guessing and in some cases reached 100% accuracy, i.e. all 200,000 buildings had their 

class category accurately predicted by the predictive model. Classification accuracy is 

strongly tied to the number of features used to develop the model, with higher numbers 

of features generally resulting in higher accuracy. However, increasing the feature count 

significantly slows the predictive model development time and increases the memory 

requirements, as the equations required to resolve the classification problem scale 

exponentially. There is therefore a significant compromise between accuracy, 

computation time and computational resources.  

One example of a parameter with high classification accuracy is the Occupants 

parameter. The VSM data set has 15 different profiles for 1 to 5 possible occupants, 

resulting in 75 different occupancy profiles. While this appears to be a high number of 

different cases, the classification algorithm can easily detect the differences between 

each number of occupants and between each profile. Practically speaking the profiles 

themselves are unlikely to correspond exactly to real house occupants, and so a 

developed predictive model based on occupancy simulations must be applied with 

caution.  

Applying smart meter data from 30 houses to the developed predictive models 

resulted in variable classification accuracy. Classification was more effective for 

aggregate electricity consumption, leading to the conclusion that the stochastic loads of 

the virtual data set did not fully correspond with the real house occupants. The authors 

recommend using aggregated electricity consumption to more easily correspond 



between modeled occupancy and real occupancy, should the need arise. A more detailed 

and more extensive real smart meter data set would allow for a better validation of the 

predictive models developed using the virtual set. Unfortunately, to the knowledge of 

the authors an appropriate data set for residential building classification does not exist, 

especially given the conclusions of this paper on the number of buildings required for 

reliable classification with higher numbers of features. 

The results of this paper illustrate that classification has the potential to aid in 

the segmentation and characterisation of residential building stocks, provided a 

sufficiently detailed smart meter data set exists to train the models. This would directly 

benefit those seeking to develop building stock energy models but lack information 

about the buildings in the studied stock. Given the highly stochastic nature of residential 

electricity consumption, which depends on the individuals inhabiting the house, proper 

classification of real smart data using a virtual set of data is not guaranteed. It would be 

preferable to use a sufficiently large, detailed real smart meter data set with knowledge 

of the building characteristics to train the predictive model. The virtual classification 

results illustrates that building parameters can be predicted with a high level of accuracy 

with the electricity consumption only, which is a promising outcome as a source of data 

for future building stock energy modeling work. 

7 Glossary 

Features (f): Features are the number of data points representing a single building’s 

energy consumption. By default a single building is represented by 35 040 features, 

which are electricity consumption data at 15 minute intervals for a full year. Other 

values are possible since the energy data can be aggregated, for example 365 features 

for daily-aggregated electricity consumption, or 12 features for monthly-aggregated 

data. 



Predictors (p): The predictors represent the complete energy consumption data used to 

develop the predictive models. The predictor data set is a [𝑓𝑓 × 𝑎𝑎] matrix, where 𝑓𝑓 is the 

number of features and 𝑎𝑎 is the number of buildings, for example [365 × 1000] for a 

data set of daily energy use values of 1000 buildings.  

Class (c) and category (cat): The class is the building parameter selected for 

classification, such as the building heated surface area or the location of the building. 

Each class is divided into a number of categories, which typically represent bins of 

values, or discrete values, and do not represent real numbers. For example, locations 1 

through 7 represent different regions in the selected building stock, or the air 

conditioning (AC) class categories may be represented by 1 (no air conditioning), 2 (air-

source heat pump), or 3 (window air conditioning). In the latter example, a building’s 

AC would be represented by a value from the set {1,2,3}. The exact values of the 

categories depend on the chosen data set used for classification. 

Response (r): The response data is the set of class values for one specific parameter, 

such as the building’s surface area category or the location. Each building is represented 

by a single known value resulting in a vector of length 𝑎𝑎 with values corresponding to 

the class categories for the parameter studied. Using the example from the class 

categories for air conditioning, the vector [𝑟𝑟𝐴𝐴𝐴𝐴] of length 𝑎𝑎 would contain air 

conditioning class values from the set {1,2,3}. These values are used to train the 

predictive model by establishing a link between the predictors (energy data) and 

responses (building parameters). 
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Appendix 1: Practical application of linear discriminant analysis

In order to illustrate a practical application of LDA, a data set of residential electricity 

consumption for the months of January and July for 1399 houses is presented in Figure 

A-1. In the data set there are 362 “small” houses (average area of 115 m2) and 1037 

“large” houses (average area of 250 m2). A small set of data is used from the Virtual 

Smart Meter data set by Neale et al. (2020a) for the purpose of this appendix.

To summarize the example in the terms presented in the paper glossary:

• Buildings: 1399 single-family homes.

• Features: January and July electricity consumption. Each building is 

represented by two electricity consumption values �𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗,𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗�.
• Class: house size, represented by categories describing the size.

• House size categories: ‘small’ and ‘large’.

• Predictors: the feature pairs �𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗,𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗� for 1399 homes.

• Response: the size category labels for 1399 homes, either {‘small’} or 

{‘large’}.

Figure A-1. January and July electricity consumption for small and large houses. Class: house size, categories (2): 
small and large, features (2): January and July electricity consumption. 



The data in Figure A-1 illustrates that there is some degree of overlap between 

the small and large house data, which is due to the variety of building parameters used 

to model the homes. The goal of classification using LDA would be to establish a linear 

decision boundary that would best separate the two data sets such that new values of 

January and July electricity consumption will be classified as either “small” or “large”. 

The probability 𝑝𝑝 of a new data point belonging to one particular class category 𝑐𝑐 can 

be expressed using Equation (A-1).  𝑝𝑝𝑐𝑐 =
𝑛𝑛𝑐𝑐𝑛𝑛  (A-1) 

where 𝑛𝑛𝑐𝑐 is number of samples in class category 𝑐𝑐, 𝑛𝑛 is the total number of samples. For 

the example given, 𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗 = 0.259 and 𝑝𝑝𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 = 0.741. Consider that the data can be 

divided into two subsets (𝑐𝑐 = 2), 𝒀𝒀𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗  and 𝒀𝒀𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙, which represent the electricity 

consumption data for the small houses and large houses, respectively, and can more 

generally be expressed as 𝒀𝒀𝑐𝑐. Each subset 𝒀𝒀𝒄𝒄 also has two features (𝑓𝑓 = 2) in this 

example, which can be expressed as the subsets 𝑿𝑿𝑗𝑗𝑐𝑐𝑗𝑗 and 𝑿𝑿𝑗𝑗𝑗𝑗𝑗𝑗, for January and July 

electricity consumption, respectively. Each subset can therefore be expressed as 

matrices �𝑿𝑿𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑐𝑐𝑗𝑗 𝑿𝑿𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗� and �𝑿𝑿𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑐𝑐𝑗𝑗 𝑿𝑿𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑗𝑗𝑗𝑗� of size [𝑛𝑛𝑐𝑐 × 𝑓𝑓]. Note that 

variables that are vectors or matrices are indicated with bold text. 

The mean of each subset 𝐗𝐗 can be calculated using Equation (A-2). Since there 

are a number of features per class category, the resulting mean values are stored in 

vector form of size [1 × 𝑓𝑓].  

𝝁𝝁𝑐𝑐 =
1𝑛𝑛𝑐𝑐 �𝑿𝑿𝑐𝑐,𝑖𝑖𝑓𝑓

𝑖𝑖 = 1  (A-2) 

where 𝝁𝝁𝑐𝑐 is a [1 × 2] vector containing the mean values of the January and July 

electricity consumption values for class category 𝑐𝑐, and 𝑖𝑖 is the feature count. The mean 



values can then be used to determine the within-class covariance, as expressed in 

Equation (A-3). 

𝑲𝑲𝑐𝑐 =
1𝑛𝑛𝑐𝑐 − 1

��𝑿𝑿𝑐𝑐,𝑖𝑖 − 𝝁𝝁𝑐𝑐�𝑓𝑓
𝑖𝑖=1 �𝑿𝑿𝑐𝑐,𝑖𝑖 − 𝝁𝝁𝑐𝑐�𝑇𝑇 (A-3) 

where 𝑲𝑲𝑐𝑐 is the covariance matrix for class category 𝑐𝑐 of size [𝑓𝑓 × 𝑓𝑓], or [2 × 2] in this 

example. A common reduction technique used in LDA is to establish a pooled estimate 

of the covariance, combining the covariance matrices for the class categories. In the 

example given, for categories “small” and “large” houses, the pooled covariance could 

be expressed as in Equation (A-4). 

𝑲𝑲 =
(𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗 − 1)𝑲𝑲𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗 + (𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗 − 1)𝑲𝑲𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗 + 𝑛𝑛𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 − 2

 (A-4) 

where 𝑲𝑲 is the pooled covariance matrix. By using the inverse of the covariance matrix, 

a discriminant function 𝛿𝛿𝑐𝑐(𝑥𝑥) can be determined, where the goal is to determine the 

maximum value of 𝛿𝛿𝑐𝑐(𝑥𝑥). For the purpose of brevity the derivation of Equation (A-5) is 

not presented here, but can be found in many reference texts related to machine learning 

techniques, such as in James et al. (2013). 

𝛿𝛿𝑐𝑐(𝑥𝑥) = 𝒙𝒙𝑇𝑇𝑲𝑲−1𝝁𝝁𝑐𝑐 − 1

2
𝝁𝝁𝑐𝑐𝑇𝑇𝑲𝑲−1𝝁𝝁𝑐𝑐 + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑐𝑐) (A-5) 

where 𝒙𝒙 contains the feature variables, which in this case are the electricity 

consumption values in the months of January and July (𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗 and 𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗), and where the 

mean 𝜇𝜇𝑐𝑐 and the inverse matrix 𝑲𝑲−1 are determined using Equations (A-2) and (A-4), 

respectively. Equation (A-5) expresses the projection of the mean and covariance of the 

data sets on a projection axis and establishes a decision line by maximizing the term to 

the right of the equal sign. The process can be completed for each class category, as 

illustrated in Equations (A-6) and (A-7) for the small house and large house categories, 

respectively. 



𝛿𝛿𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗(𝑥𝑥) = [𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗 𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗]𝑲𝑲−1 �𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑐𝑐𝑗𝑗𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗 �
− 1

2
[𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑐𝑐𝑗𝑗 𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗]𝑲𝑲−1 �𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑐𝑐𝑗𝑗𝜇𝜇𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗 � + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗) 

(A-6) 

𝛿𝛿𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) = [𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗 𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗]𝑲𝑲−1 �𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑗𝑗𝑗𝑗 �
− 1

2
[𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑐𝑐𝑗𝑗 𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑐𝑐𝑗𝑗]𝑲𝑲−1 �𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗𝑗𝑗𝑗𝑗 � + 𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙� (A-7) 

If the discriminant functions for each category are assumed equal (𝛿𝛿𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗(𝑥𝑥) =𝛿𝛿𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)), a linear decision boundary between those two categories can be established. 

By combining Equations (A-6) and (A-7) and simplifying, the resulting linear boundary 

separating the two class categories can be expressed as Equation (A-8). ℎ𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗:𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽𝑗𝑗𝑐𝑐𝑗𝑗𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗 + 𝐶𝐶 (A-8) 

where 𝛽𝛽𝑗𝑗𝑐𝑐𝑗𝑗, 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗 and 𝐶𝐶 are constants determined from the data and where ℎ𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗:𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 is 

the classification rule result, which for a new coordinate of �𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗,𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗� would determine 

whether the data point belongs to the first or second class category. If ℎ𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗:𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 > 0, 

the data belongs to the “small house” category. In this specific example there are only 

two categories, which indicates that if the data point is not a small house, it must be a 

large house, but in other cases there could be multiple other categories requiring 

additional classification boundaries to be verified. For the example given, the 

coefficients are described in Equation (A-9).  ℎ𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗:𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 = −0.00154𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗 + 0.00242𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗 + 5.6142 (A-9) 

The linear decision boundary in Equation (A-9) can be graphed by assuming ℎ𝑠𝑠𝑠𝑠𝑐𝑐𝑗𝑗𝑗𝑗:𝑗𝑗𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 = 0, which is the line of transition between the two categories. By 

introducing the original data set values of �𝐸𝐸𝑗𝑗𝑐𝑐𝑗𝑗,𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗� into the classification boundary 

equation, the categories of the original data can be predicted and compared to the real 



category values. For the studied example, the correct and incorrect predictions are 

illustrated in Figure A-2.

Figure A-2. Linear classification boundary with correct and incorrect predictions

For this case, the accuracy of the classification boundary can be expressed as the 

correct predictions divided by the number of data points, as described in Equation (A-

10).

𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 (A-10)

where 𝐶𝐶𝐶𝐶 is the classification accuracy, 𝐶𝐶𝐶𝐶 is the number of correct predictions and 𝑇𝑇𝐶𝐶
is the total predictions for a validation set. For this study, k-fold cross-validation is used 

to determine CP for all predictive models, where 𝑘𝑘 = 5. Readers unfamiliar with k-fold 

cross-validation may refer to the end of this appendix for a description of the method. 

The example presented in Figure A-2 is simple in that it can be graphed in two 

dimensions, because there are only two features studied. With additional features the 

classification boundary becomes multidimensional, which can be expressed in a more 

general form as Equation (A-11).



ℎ𝑐𝑐𝑖𝑖:𝑐𝑐𝑗𝑗 = 𝐶𝐶 + �𝛽𝛽𝑐𝑐𝐸𝐸𝑐𝑐𝑓𝑓
𝑐𝑐=1  (A-11) 

where ℎ𝑐𝑐𝑖𝑖:𝑐𝑐𝑗𝑗 is the classification rule between class categories 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑐𝑐, 𝐶𝐶 is a constant 

and 𝛽𝛽𝑐𝑐𝐸𝐸𝑐𝑐 are the corresponding coefficients and feature values. For smart meter data, 

the feature values are the electricity consumption values at various moments in time that 

depend on the desired time aggregation, i.e. hourly, daily, monthly, etc. Equation (A-11) 

requires the resolution of a matrix equation that scales exponentially with the number of 

features and class categories, which can rapidly become quite large considering a 

typical year of smart meter data recorded at 15-minute intervals has 35 040 data points. 

Classification accuracy: k-fold cross-validation 

The classification accuracy is determined by dividing the number of correct 

predictions (CP) by the number of total predictions (TP), as described in Equation (A-

10). Establishing CP requires a data set to be divided into a test set and a validation set, 

commonly referred to as holdover validation. For holdover validation, the predictive 

model would be trained with some portion of the data set, such as 70%, and then the 

remaining data would be used to determine the classification accuracy. Since this 

prevents the use of the entire data set for training of the model, k-fold cross-validation is 

commonly used, which divides the data set into k segments and each segment is used to 

validate the predictive model developed with the remaining data, a process that is 

repeated k times. This allows the entire data set to be used for predictive model 

development and testing, but requires significantly longer computation time as the 

classification modeling is repeated multiple times. The classification accuracy for k-fold 

validation is expressed in Equation (A-12).  

𝐶𝐶𝐶𝐶 =
∑ 𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖=1𝑇𝑇𝐶𝐶  (A-12) 



where 𝑘𝑘𝑓𝑓𝑓𝑓𝑗𝑗𝑓𝑓𝑠𝑠 is the number of folds used for validation, which in the case of this study 

is 5-fold cross-validation, and 𝐶𝐶𝐶𝐶𝑖𝑖 is the number of correct predictions for fold 𝑖𝑖. There 

are 1260 correctly predicted data points out of the 1399 total data in the set. For the 

example illustrated in Figure A-2, 𝐶𝐶𝐶𝐶 is equal to 0.901, i.e. 90.1% of houses are 

correctly classified by the illustrated linear decision boundary. An illustration of 5-fold 

cross-validation is presented in Figure A-3.

Figure A-3. Example of 5-fold cross-validation
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