<  Retour au portail Polytechnique Montréal

Documents publiés en "2024"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Nombre de documents: 7

Ghadesi, A., Lamothe, M., & Li, H. (2024). What causes exceptions in machine learning applications? Mining machine learning-related stack traces on Stack Overflow. Empirical Software Engineering, 29, 107 (37 pages). Lien externe

Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Characterizing the Prevalence Distribution and Duration of Stale Reviewer Recommendations. IEEE Transactions on Software Engineering, 3422369 (14 pages). Lien externe

Kazemi, F., Lamothe, M., & McIntosh, S. (2024). Replication Package and Online Appendix for "Characterizing the impact, distribution, and duration of stale reviewer recommendations" [Ensemble de données]. Lien externe

Oueslati, K., Laberge, G., Lamothe, M., & Khomh, F. (2024). Mining Action Rules for Defect Reduction Planning. Proceedings of the ACM on Software Engineering, 1(FSE), 2309-2331. Lien externe

Robillard, M. P., Arya, D. M., Ernst, N. A., Guo, J. L. C., Lamothe, M., Nassif, M., Novielli, N., Serebrenik, A., Steinmacher, I., & Stol, K.-J. (2024). Communicating Study Design Trade-offs in Software Engineering. ACM Transactions on Software Engineering and Methodology, 33(5), 112 (10 pages). Lien externe

Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (2024). How Trustworthy is Your CI Accelerator? A Comparison of the Trustworthiness of CI Acceleration Products. IEEE Software, 3395616 (6 pages). Lien externe

Zeng, Z., Xiao, T., Lamothe, M., Hata, H., & McIntosh, S. (avril 2024). A Mutation-Guided Assessment of Acceleration Approaches for Continuous Integration: An Empirical Study of YourBase [Communication écrite]. 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR 2024), Lisbon, Portugal. Lien externe

Liste produite: Fri Jan 17 01:48:56 2025 EST.