<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Wehbi, Osama"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : A | S | W
Nombre de documents: 8

A

Arisdakessian, S., Wehbi, O., Abdul Wahab, O., Mourad, A., & Otrok, H. (2025). Towards Vox Populi in Federated Learning: A Fair and Inclusive Client Selection Framework. IEEE Transactions on Artificial Intelligence, 1, 1-15. Lien externe

Arisdakessian, S., Wehbi, O., Abdul Wahab, O., Mourad, A., Otrok, H., & Guizani, M. (2025). A Two-Level Dirichlet Framework for Heterogeneous Federated Network. IEEE Transactions on Network Science and Engineering. Lien externe

Arisdakessian, S., Abdul Wahab, O., Wehbi, O., Mourad, A., & Otrok, H. (septembre 2024). Detecting Free-Riders in Federated Learning Using an Ensemble of Similarity Distance Metrics [Communication écrite]. 4th Intelligent Cybersecurity Conference (ICSC 2024), Valencia, Spain. Lien externe

Arisdakessian, S., Wahab, O. A., Wehbi, O., Mourad, A., & Otrok, H. (juillet 2024). Trustworthy Hierarchical Federated Learning for Digital Healthcare [Communication écrite]. IEEE Annual Congress on Artificial Intelligence of Things (AIoT 2024), Melbourne, Australia. Lien externe

S

Sami, H., Hammoud, A., Arafeh, M., Wazzeh, M., Arisdakessian, S., Chahoud, M., Wehbi, O., Ajaj, M., Mourad, A., Otrok, H., Wahab, O. A., Mizouni, R., Bentahar, J., Talhi, C., Dziong, Z., Damiani, E., & Guizani, M. (2024). The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions. IEEE Communications Surveys and Tutorials, 3392642 (49 pages). Lien externe

W

Wehbi, O., Arisdakessian, S., Guizani, M., Wahab, O. A., Mourad, A., Otrok, H., Khzaimi, H. A., & Ouni, B. (2024). Enhancing Mutual Trustworthiness in Federated Learning for Data-Rich Smart Cities. IEEE Internet of Things Journal, 1-1. Lien externe

Wehbi, O., Arisdakessian, S., Abdul Wahab, O., Otrok, H., Otoum, S., Mourad, A., & Guizani, M. (2023). FedMint: Intelligent Bilateral Client Selection in Federated Learning with Newcomer IoT Devices. IEEE Internet of Things Journal, 15 pages. Lien externe

Wehbi, O., Abdul Wahab, O., Mourad, A., Otrok, H., Alkhzaimi, H., & Guizani, M. (juin 2023). Towards Mutual Trust-Based Matching For Federated Learning Client Selection [Communication écrite]. 2023 International Wireless Communications and Mobile Computing (IWCMC 2023), Marrakesh, Morocco. Lien externe

Liste produite: Sat Dec 6 04:28:40 2025 EST.