<  Back to the Polytechnique Montréal portal

Items where Author is "Raynaud, Paul"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: B | R
Number of items: 5.

B

Bigeon, J., Orban, D., & Raynaud, P. (2023). A framework around limited-memory partitioned quasi-Newton methods. (Technical Report n° G-2023-17). External link

R

Raynaud, P. (2024). Exploiting the Partially-Separable Structure in Quasi-Newton Methods for Unconstrained Optimization and Deep Learning [Ph.D. thesis, Polytechnique Montréal]. Restricted access

Rahbarnia, F., & Raynaud, P. (2023). FluxNLPModels.jl and KnetNLPModels.jl : connecting deep learning models with optimization solvers. (Unspecified). External link

Raynaud, P., Orban, D., & Bigeon, J. (2023). PLSR1 : a limited-memory partioned quasi-Newton optimizer for partially-separable loss functions. (Technical Report n° G-2023-41). External link

Raynaud, P., & Orban, D. (2023, September). Limited-memory stochastic partitioned quasi-newton training [Poster]. Edge Intelligence Workshop, Montreal, Qc, Canada (1 page). External link

List generated on: Sat May 24 06:38:32 2025 EDT