Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
Alam, M. S., Tremblay, R., Islam, K., Rahmzadeh, A., Hossain, F., & King, P. (2020, September). Use of rocking steel piers for enhanced seismic performance of bridges [Paper]. 17th world Conference on Earthquake Engineering (17WCEE), Sendai, Japan (12 pages). Unavailable
Hossain, F., Rahmzadeh, A., Tremblay, R., & Alam, M. S. (2024). Multi-spring model for tubular rocking steel bridge piers subjected to earthquake loading. Engineering Structures, 315, 118449 (17 pages). External link
Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2023). 3D response simulation of a bridge with a posttensioned base rocking steel pier under sequential loading of traffic loads, braking force, and earthquake excitations. Earthquake Engineering & Structural Dynamics, 52(9), 2830-2851. External link
Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2023). Cyclic Response of Buckling-Restrained Stainless Steel Energy Dissipating Bars. I: Experimental Investigations. Journal of Engineering Mechanics, 149(4), 14 pages. External link
Rahmzadeh, A., Tremblay, R., & Alam, M. S. (2023). Cyclic Response of Buckling-Restrained Stainless Steel Energy Dissipating Bars. II: Finite Element Investigations. Journal of Engineering Mechanics, 149(4), 12 pages. External link
Rahmzadeh, A., Tremblay, R., & Alam, M. S. (2022). Finite-element simulation of the lateral response of posttensioned base rocking steel bridge piers. Journal of Structural Engineering, 148(9), 18 pages. External link
Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2021). Experimental Investigations on the Lateral Cyclic Response of Post-Tensioned Rocking Steel Bridge Piers. Journal of Structural Engineering, 147(12), 18 pages. External link
Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2018). Analytical Prediction and Finite-Element Simulation of the Lateral Response of Rocking Steel Bridge Piers with Energy-Dissipating Steel Bars. Journal of Structural Engineering (United States), 144(11), 15 pages. External link
Wakjira, T. G., Rahmzadeh, A., Alam, M. S., & Tremblay, R. (2022). Explainable machine learning based efficient prediction tool for lateral cyclic response of post-tensioned base rocking steel bridge piers. Structures, 44, 947-964. External link